Cell movement is an essential biological process, whether it's cancer cells metastasizing to other parts of the body or immune cells migrating to heal a wound. However, the principle by which cells autonomously determine their direction of movement without external stimuli has remained unknown until now.
Through this research, KAIST and an international joint research team have elucidated the principle by which cells decide their direction and move on their own, offering a crucial clue for identifying the causes of cancer metastasis and immune diseases and establishing new treatment strategies.
KAIST announced on the 10th of November that the research team led by Endowed Chair Professor Won Do Heo of the Department of Biological Sciences, in collaboration with the research team of Endowed Chair Professor Kwang-Hyun Cho of the Department of Bio and Brain Engineering, and Professor Kapsang Lee's research team at Johns Hopkins University in the US, has for the first time in the world identified the 'autonomous driving mechanism' by which cells determine their direction of movement without external signals.
The research team developed a new imaging technique called 'INSPECT (INtracellular Separation of Protein Engineered Condensation Technique)' that allows direct visualization of how proteins interact within living cells. Using this technology, they revealed the principle of the cell's internal program for autonomously deciding its direction of movement.
The team newly analyzed the operation of the key proteins that regulate cell movement, the Rho family proteins (Rac1, Cdc42, RhoA). The results showed that these proteins do not merely divide the front and back of the cell, as previously theorized, but that the cell's decision to move straight or change direction depends on which protein it binds with.
The INSPECT technology artificially implements the phenomenon of 'phase separation,' where proteins, upon binding, naturally form segregated regions that do not mix well. This technique allows for the direct visualization of how proteins actually bind within the cell using a fluorescent signal.