Unraveling the Secret of Cell Movement​
en-GBde-DEes-ESfr-FR

Unraveling the Secret of Cell Movement​


Cell movement is an essential biological process, whether it's cancer cells metastasizing to other parts of the body or immune cells migrating to heal a wound. However, the principle by which cells autonomously determine their direction of movement without external stimuli has remained unknown until now.

Through this research, KAIST and an international joint research team have elucidated the principle by which cells decide their direction and move on their own, offering a crucial clue for identifying the causes of cancer metastasis and immune diseases and establishing new treatment strategies.

KAIST announced on the 10th of November that the research team led by Endowed Chair Professor Won Do Heo of the Department of Biological Sciences, in collaboration with the research team of Endowed Chair Professor Kwang-Hyun Cho of the Department of Bio and Brain Engineering, and Professor Kapsang Lee's research team at Johns Hopkins University in the US, has for the first time in the world identified the 'autonomous driving mechanism' by which cells determine their direction of movement without external signals.

The research team developed a new imaging technique called 'INSPECT (INtracellular Separation of Protein Engineered Condensation Technique)' that allows direct visualization of how proteins interact within living cells. Using this technology, they revealed the principle of the cell's internal program for autonomously deciding its direction of movement.

The team newly analyzed the operation of the key proteins that regulate cell movement, the Rho family proteins (Rac1, Cdc42, RhoA). The results showed that these proteins do not merely divide the front and back of the cell, as previously theorized, but that the cell's decision to move straight or change direction depends on which protein it binds with.

The INSPECT technology artificially implements the phenomenon of 'phase separation,' where proteins, upon binding, naturally form segregated regions that do not mix well. This technique allows for the direct visualization of how proteins actually bind within the cell using a fluorescent signal.

Archivos adjuntos
Regions: Asia, South Korea
Keywords: Health, Medical, Well being, Science, Life Sciences

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonios

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Trabajamos en estrecha colaboración con...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by DNN Corp Terms Of Use Privacy Statement