Efficient Quantum Process Tomography for Enabling Scalable Optical Quantum Computing​
en-GBde-DEes-ESfr-FR

Efficient Quantum Process Tomography for Enabling Scalable Optical Quantum Computing​


Optical quantum computers are gaining attention as a next-generation computing technology with high speed and scalability. However, accurately characterizing complex optical processes, where multiple optical modes interact to generate quantum entanglement, has been considered an extremely challenging task. KAIST research team has overcome this limitation, developing a highly efficient technique that enables complete characterization of complex multimode quantum operations in experiment. This technology, which can analyze large-scale operations with less data, represents an important step toward scalable quantum computing and quantum communication technologies.

KAIST announced on November 17th that a research team led by Professor Young-Sik Ra from the Department of Physics has developed a Multimode Quantum Process Tomography technique capable of efficiently identifying the characteristics of second-order nonlinear optical quantum processes that are essential for optical quantum computing.

Efficient 'CT Scan' Technology for Quantum Computers

'Tomography' is a technique, similar to a medical CT scan, that reconstructs an invisible internal structure from diverse measurements. Similarly, quantum computing requires a method that reconstructs the internal workings of quantum operations using various measurement data. To outperform conventional computers, a quantum computer must be capable of manipulating a large number of quantum units (qubits or qumodes) at the same time. However, as the number of qubits or quantum optical modes (qumodes) increases, the resources required for tomography grows exponentially, making existing technologies unable to analyze systems with even five or more optical modes.

With the newly developed technique, the research team is now able to clearly determine what actually happens inside an optical quantum computer, as if taking a CT scan.

Introducing a New Mathematical Framework Based on Amplification and Noise Matrices

Inside a quantum computer, multiple optical modes interact in a highly complex and entangled way. The research team has introduced a new mathematical framework that precisely describes multimode second-order nonlinear optical quantum processes.

This method analyzes how input states change under a given operation using two key components: the 'Amplification matrix,' which describes how the mean fields of light are transformed, and the 'Noise matrix,' which captures the noise or loss introduced through environmental interactions.

Together, these components create a 'quantum state map' that enables accurate and simultaneous observation of both the ideal quantum evolution of light (unitary changes) and the unavoidable noise (non-unitary changes) present in real devices. This leads to a much more realistic characterization of how an optical quantum computer actually operates.

Reducing the Required Measurement Data and Expanding Analysis to 16 Modes

To determine how a quantum operation works, the research team input several types of quantum states and observed how the outputs changed. They then applied a statistical method known as Maximum Likelihood Estimation to reconstruct the internal operation that most accurately explains the collected data while satisfying the necessary physical conditions.

Using this approach, the research team dramatically reduced the amount of measurement data required. Whereas existing methods quickly become impractical—requiring enormous datasets even for systems with slightly more than a few modes and typically limiting analysis to about five modes—the new technique overcomes this bottleneck. The team successfully performed the world’s first experimental characterization of a large-scale optical quantum operation involving 16 modes, an unprecedented milestone in the field.

Professor Young-Sik Ra stated, "This research significantly increases the efficiency of Quantum Process Tomography, a foundational technology essential for quantum computing. The acquired technology will greatly contribute to enhancing the scalability and reliability of various quantum technologies, including quantum computing, quantum communication, and quantum sensing."

The study, in which Geunhee Gwak (Integrated M.S, Ph.D. Candidate, Department of Physics) participated as the first author, and Dr. Chan Roh (Postdoctoral Researcher), Young-Do Yoon (Integrated M.S./Ph.D. Candidate), and Professor Myungshik Kim (Imperial College London) participated as co-authors, was formally published online in the prominent international academic journal 'Nature Photonics' on November 11, 2025.

※ Article Title: Completely characterizing multimode second-order nonlinear optical quantum processes, DOI:10.1038/s41566-025-01787-x

This research was supported by the National Research Foundation of Korea (Quantum Computing Technology Development Project, Mid-career Researcher Support Project, Quantum Simulator Development for Material Innovation Project, Quantum Technology R&D Flagship Project, Basic Research Lab Support Project), the Institute of Information & Communications Technology Planning & Evaluation (Core Source Technology for Quantum Internet Project, University ICT Research Center Support Project), and the US Air Force Research Laboratory.

Attached files
Regions: Asia, South Korea
Keywords: Applied science, Computing, Engineering, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement