Drones reveal unexpectedly high emissions from wastewater treatment plants
en-GBde-DEes-ESfr-FR

Drones reveal unexpectedly high emissions from wastewater treatment plants


Greenhouse gas emissions from many wastewater treatment plants may be more than twice as large as previously thought. This is shown in a new study from Linköping University, where the researchers used drones with specially manufactured sensors to measure methane and nitrous oxide emissions.

“We show that certain greenhouse gas emissions from wastewater treatment plants have been unknown. Now that we know more about these emissions, we also know more about how they can be reduced,” says Magnus Gålfalk, docent at Tema M - Environmental Change at Linköping University, who led the study published in the journal Environmental Science & Technology.

Wastewater treatment plants receiving sewage from households and industries account for approximately 5 per cent of human-induced methane and nitrous oxide emissions, according to the UN Intergovernmental Panel on Climate Change, IPCC.

To calculate this, the IPCC uses so-called emission factors that are linked to how many households are connected to the treatment plant. The calculation model then yields a number for the emissions from each wastewater treatment plant. This number is an estimate and not the result of actual measurements, which has turned out to be problematic.

According to the researchers, wastewater treatment plants continuously work to reduce the emissions. But with the current reporting system, the emissions remain on the same level, according to the IPCC model, regardless of whether actual emissions are decreasing or not.

“It would be better if the emissions reported were based on actual measurements. This would make it easier for municipalities to show the benefits of investments to mitigate the emissions,” says Magnus Gålfalk.

Together with Professor David Bastviken at LiU, he has used a specially built drone that measured emissions of the greenhouse gases methane (CH4) and nitrous oxide (N2O) at twelve Swedish treatment plants that use anaerobic digestion as a sludge treatment. The measurements showed that methane and nitrous oxide emissions are significantly higher – about 2.5 times – than the IPCC calculation models show.

The emissions occurred mainly after digestion when the sludge is stored to reduce the amount of potentially harmful micro-organisms before being used as, for example, fertilizer. The current study shows that the amount of methane released in storage has been underestimated. And the researchers discovered something else – the measurements also showed that large amounts of nitrous oxide were emitted.

Nitrous oxide is a very powerful but fairly unknown greenhouse gas – it has a climate impact almost 300 times higher than carbon dioxide per kilogram.

“We show that the climate impact from nitrous oxide emissions from sludge storage is as great as that from methane, and this wasn’t known before. So it’s a major extra source to keep an eye on,” says Magnus Gålfalk.

The study was mainly funded by the European Research Council, Horizon 2020, the Swedish Research Council, Formas and Svenskt Vatten Utveckling (SVU; part of the Swedish Water and Wastewater Association).
In Situ Observations Reveal Underestimated Greenhouse Gas Emissions from Wastewater Treatment with Anaerobic Digestion – Sludge Was a Major Source for Both CH4 and N2O, Magnus Gålfalk, David Bastviken, Environmental Science & Technology Vol 59/Issue 34, 2025, published online 21 August 2025. DOI: 10.1021/acs.est.5c04780
Attached files
  • Custom built drone to survey greenhouse gas emissions.Credit: Magnus GålfalkUsage: The contents may be downloaded, used and shared in media channels by, for example, journalists, bloggers, writers, pundits, etc., for purposes of communication, description and commenting on your press release, post or information, on the condition that the contents are used unchanged and in their entirety. The creator must be specified to the extent and in the manner required by good publishing practice (which means, among other things, that the photographer of any photographs must nearly always be specified).
Regions: Europe, Sweden
Keywords: Science, Climate change, Applied science, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement