Unusual carbon dioxide-rich disk detected around young star challenges planet formation models
en-GBde-DEes-ESfr-FR

Unusual carbon dioxide-rich disk detected around young star challenges planet formation models


A study led by Jenny Frediani at Stockholm University has revealed a planet-forming disk with a strikingly unusual chemical composition: an unexpectedly high abundance of carbon dioxide (CO₂) in regions where Earth-like planets may one day form. The discovery, made using the James Webb Space Telescope (JWST), challenges long-standing assumptions about the chemistry of planetary birthplaces. The study is published in Astronomy & Astrophysics.

“Unlike most nearby planet-forming disks, where water vapor dominates the inner regions, this disk is surprisingly rich in carbon dioxide,” says Jenny Frediani, PhD student at the Department of Astronomy, Stockholm University.
“In fact, water is so scarce in this system that it’s barely detectable — a dramatic contrast to what we typically observe.”

A newly formed star is initially deeply embedded in the gas cloud from which it was formed and creates a disk around itself where planets in turn can be formed. In conventional models of planet formation, pebbles rich in water ice drift from the cold outer disk toward the warmer inner regions, where the rising temperatures cause the ices to sublimate. This process usually results in strong water vapor signatures in the disk's inner zones. However, in this case, the JWST/MIRI spectrum shows a puzzlingly strong carbon dioxide signature instead.
“This challenges current models of disk chemistry and evolution since the high carbon dioxide levels relative to water cannot be easily explained by standard disk evolution processes,” Jenny Frediani explains.

Arjan Bik, researcher at the Department of Astronomy, Stockholm University, adds: “Such a high abundance of carbon dioxide in the planet-forming zone is unexpected. It points to the possibility that intense ultraviolet radiation — either from the host star or neighbouring massive stars — is reshaping the chemistry of the disk.”
The researchers also detected rare isotopic variants of carbon dioxide, enriched in either carbon-13 or the oxygen isotopes ¹⁷O and ¹⁸O, clearly visible in the JWST data. These isotopologues could offer vital clues to long-standing questions about the unusual isotopic fingerprints found in meteorites and comets — relics of our own Solar System's formation.

This CO₂-rich disk was found in the massive star-forming region NGC 6357, located approximately 1.7 kiloparsecs (about 53 quadrillion kilometers) away. The discovery was made by the eXtreme Ultraviolet Environments (XUE) collaboration, which focuses on how intense radiation fields impact disk chemistry.
Maria-Claudia Ramirez-Tannus from the Max Planck Institute for Astronomy in Heidelberg and lead of the XUE collaboration says that it is an exciting discovery: “It reveals how extreme radiation environments — common in massive star-forming regions — can alter the building blocks of planets. Since most stars and likely most planets form in such regions, understanding these effects is essential for grasping the diversity of planetary atmospheres and their habitability potential.”

Thanks to JWST’s MIRI instrument, astronomers can now observe distant, dust-enshrouded disks with unprecedented detail at infrared wavelengths — providing critical insights into the physical and chemical conditions that govern planet formation. By comparing these intense environments with quieter, more isolated regions, researchers are uncovering the environmental diversity that shapes emerging planetary systems. Astronomers at Stockholm University and Chalmers have helped develop the MIRI instrument which is a camera and a spectrograph that observes mid- to long-wavelength infrared radiation from 5 microns to 28 microns. It also has coronagraphs, specifically designed to observe exoplanets.

The study “XUE: The CO_2-rich terrestrial planet-forming region of an externally irradiated Herbig disk” is published in Astronomy & Astrophysics.

Contact
Jenny Frediani, Department of Astronomy, Stockholm University. E-mail: jenny.frediani@astro.su.se, phone: +46 73 842 90 04 (first contact via e-mail preferred)
Paper title: “XUE: The CO_2-rich terrestrial planet-forming region of an externally irradiated Herbig disk”
Authors: Jenny Frediani, Arjan Bik, María Claudia Ramírez-Tannus, Rens Waters, Konstantin V. Getman, Eric D. Feigelson, Bayron Portilla-Revelo, Benoît Tabone, Thomas J. Haworth, Andrew Winter, Thomas Henning, Giulia Perotti, Alexis Brandeker, Germán Chaparro, Pablo Cuartas-Restrepo, Sebastián Hernández, Michael A. Kuhn, Thomas Preibisch, Veronica Roccatagliata, Sierk E. van Terwisga, and Peter Zeidler
Journal: Astronomy & Astrophysics
DOI: https://doi.org/10.1051/0004-6361/202555718
Attached files
  • An image of the star-forming region NGC 6357 with the young star XUE 10. Observations with JWST/MIRI reveal a planet-forming disk whose spectrum shows clear detections of four distinct forms of carbon dioxide (CO2), but only little water, providing new insights into the chemical environment where planets are taking shape. Photo credit: Stockholm University (SU) and María Claudia Ramírez-Tannus, Max Planck Institute for Astronomy (MPIA).
  • Jenny Frediani, Stars, Planets and Astrobiology, Department of Astronomy, Stockholm University. Photo: Adriana Todorovic/Stockholm University
Regions: Europe, Sweden
Keywords: Science, Physics, Space Science

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement