Simulated High-altitude exposure for 24-hours is well tolerated by adolescents and adults with single-ventricle physiology after Fontan-palliation - Joint HYPOFON study by University Hospital Bonn, the Institute of Aerospace Medicine (DLR, Cologne) and the German Sport University Cologne shows that the circulation remains stable
en-GBde-DEes-ESfr-FR

Simulated High-altitude exposure for 24-hours is well tolerated by adolescents and adults with single-ventricle physiology after Fontan-palliation - Joint HYPOFON study by University Hospital Bonn, the Institute of Aerospace Medicine (DLR, Cologne) and the German Sport University Cologne shows that the circulation remains stable


The researchers conducted a study over four days, including overnight stays, with 18 subjects at :envihab, the DLR medical research centre in Cologne. At a simulated altitude of 2500 meters above sea level, the influence of hypoxia (oxygen deficiency) on various hemodynamic and metabolic parameters was investigated. The central venous pressure via a catheter and the blood flow in the lungs using real-time magnetic resonance imaging were evaluated. The results showed that neither the pulmonarypressure nor the blood flow changed significantly. All patients able to tolerate a longer stay at altitude of 24 to 30 hours without complications.

Oxygenation levels stable even during sleep

Additionally the research team analyzed the oxygen saturation values during sleep. ‘The breathing pattern during sleep at altitude can be fundamentally different,’ explains Dr Nicole Müller, head of the study and senior physician at the Department of Paediatric Cardiology at the UKB. ‘Even in healthy people, breathing is altered with short pauses. It was therefore exciting for us to observe if and how the high altitude exposure affects patients with Fontan physiology during sleep.’ Fortunately, the analyses showed that oxygen saturation is also sufficient during sleep and that the decrease is comparable to that of healthy people.

‘These are great results,’ says Dr Müller. ‘I think that this offers many patients with Fontan circulation new perspectives. Previously, there was only data on how short-term hypoxia affects their cardiovascular system - but data on prolonged hypoxia, including overnight stays, has been lacking until now. Many of those affected have therefore never dared to spend a longer period at ambient hypoxia, such as an overnight stay in the mountains or a long-haul flight to Australia. Our study now shows that, under certain conditions, there is no health risk.’ The findings may provide guidance for physicians caring for individuals with Fontan circulation considering long-duration airplane travel or shorter stays at high altitude.

‘DLR's :envihab at the Cologne site offers unique opportunities for patient-oriented research,’ says Prof Dr Jens Tank, Head of the Cardiovascular Aerospace Medicine Department at DLR. ‘The invasive pressure measurement in the Fontan circulation and the examination with real-time MRI cannot be realized at altitude under real conditions. In the :envihab, we were able to examine the Fontan patients over several days and nights under very comfortable conditions and safely expose them to an oxygen-reduced atmosphere. We very much hope that we will be able to conduct further exciting studies together in the future.’
‘This is a great development for medicine and contributes to better quality of life for all patients with congenital heart defects,’ adds Sylvia Paul, CEO of the Children's Heart Foundation. ‘We are delighted to be able to support the joint study by the UKB, the DLR and the German Sport University Cologne and thus contribute to giving Fontan patients a better quality of life.’

Funding: The study is supported by the KinderHerz Foundation, which is funded by donations. For further information see here: www.stiftung-kinderherz.de/was-wir-tun/unsere-foerderprojekte/hoehenanpassung-bei-fontan-patienten-bonn
Publication: Nicole Müller et. al.; Peripheral Oxygenation and Pulmonary Hemodynamics in Individuals With Fontan Circulation During 24-Hour High-Altitude Exposure Simulation; DOI: https://doi.org/10.1161/CIRCULATIONAHA.123.067601

Attached files
  • (from left) Dr Julian Alexander Härtel and Dr Nicole Müller from the Department of Paediatric Cardiology at the UKB, who jointly led the study, with study nurse and coordinator Ute Baur.Picture credits: University Hospital Bonn (UKB) / M. Steinhauer
Regions: Europe, Germany, Oceania, Australia
Keywords: Health, Medical

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement