Limited Adaptability Makes Freshwater Bacteria Vulnerable to Climate Change
en-GBde-DEes-ESfr-FR

Limited Adaptability Makes Freshwater Bacteria Vulnerable to Climate Change


Freshwater bacteria with small genomes frequently undergo prolonged periods of adaptive stagnation. Based on genomic analyses of samples from Lake Zurich and other European lakes, researchers at the University of Zurich uncovered specific evolutionary strategies that shape these bacteria’s lifestyles. Understanding the evolutionary dynamics of aquatic microbial communities is key to safeguarding ecosystem services.

Freshwater resources are limited, accounting for only 3.5% of Earth’s water, with just 0.25% accessible on the surface. Nevertheless, freshwater lakes are essential for ecosystem functioning and global carbon cycling due to their high biological productivity and microbial activity. They are critical to human survival, providing drinking water, supporting agriculture, fisheries, and recreation. However, climate change – particularly rising temperatures – threatens these habitats by disrupting microbial communities that are essential for nutrient cycling and water quality maintenance.

Challenging established evolutionary paradigms
“Considering the essential roles bacterial species play in freshwater environments and their vital ecological functions, understanding their adaptive capacity to changing environmental conditions is crucial for ecosystem resilience and sustainable resource management,” says Adrian-Stefan Andrei. He is head of the Microbial Evogenomics Laboratory at the Department of Plant and Microbial Biology of the University of Zurich (UZH). His research team analyzed time-series samples from five European freshwater lakes, collected between 2015 and 2019: Lake Zurich, Lake Thun and Lake Constance in Switzerland, along with the Římov Reservoir and Jiřická Pond in the Czech Republic.

“Although niche adaptation is the main evolutionary mechanism driving population diversification and the emergence of new species, our results surprisingly show that many abundant freshwater bacteria with small genomes often experience extended periods of adaptive standstill,” says Andrei. This stalling of adaptive processes challenges the conventional expectation that microbial species can adapt to changing environmental conditions. “Given the vital functions these microbial communities play in freshwater systems, our study underscores the importance of understanding the limits of bacterial adaptability,” the researcher adds.

Secreted proteins as indicators of evolutionary adaptation
Bacteria adapt to their environments by utilizing specialized proteins, which can be secreted into the surrounding medium or bound to their cell membranes. These proteins play crucial roles in nutrient uptake, interbacterial communication, and the detection of and response to environmental stimuli. The adaptability of bacteria typically relies on the genetic diversity within the genes encoding these proteins. The researchers, however, now show that in abundant freshwater bacteria with reduced genome sizes, there is surprisingly little variation in these genes, indicating a phase of adaptive stagnation. These bacteria may therefore face challenges in adapting to changing environmental conditions.

Limited ability to adapt to changing environments
“Our observations suggest that these bacteria have likely achieved fitness peaks by reaching ideal protein structures and activity levels,” says Andrei. Their proteomes have already attained an optimal state through the course of evolution, where further major changes are neither advantageous nor necessary for the organisms to survive and adapt to their current niches. This inherent inflexibility limits the ability of these organisms to explore new genetic variation and effectively adapt to dynamic environmental conditions. “This knowledge is crucial as we navigate the escalating impacts of climate change, which significantly threatens freshwater habitats – environments especially susceptible to anthropogenic changes," concludes Adrian-Stefan Andrei.
Lucas Serra Moncadas, Cyrill Hofer, Paul-Adrian Bulzu, Jakob Pernthaler, Adrian-Stefan Andrei. Freshwater genome-reduced bacteria exhibit pervasive episodes of adaptive stasis. Nature Communications. 23 April 2024. DOI: 10.1038/s41467-024-47767-7
Attached files
  • Microbial diversity in the water of Lake Zurich in Switzerland, analyzed by researchers at the Limnological Station of the University of Zurich. (Image: Martina Schalch)
  • View of Lake Zurich from the Limnological Station of the University of Zurich in Kilchberg near Zurich, Switzerland, in March 2021. (Image: Adrian-Stefan Andrei)
Regions: Europe, Switzerland
Keywords: Science, Climate change, Environment - science

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement