Significant new discovery in teleportation research — Noise can improve the quality of quantum teleportation
en-GBde-DEes-ESfr-FR

Significant new discovery in teleportation research — Noise can improve the quality of quantum teleportation


In teleportation, the state of a quantum particle, or qubit, is transferred from one location to another without sending the particle itself. This transfer requires quantum resources, such as entanglement between an additional pair of qubits. In an ideal case, the transfer and teleportation of the qubit state can be done perfectly. However, real-world systems are vulnerable to noise and disturbances — and this reduces and limits the quality of the teleportation.

Researchers from the University of Turku, Finland, and the University of Science and Technology of China, Hefei, have now proposed a theoretical idea and made corresponding experiments to overcome this problem. In other words, the new approach enables reaching high-quality teleportation despite the presence of noise.

“The work is based on an idea of distributing entanglement — prior to running the teleportation protocol — beyond the used qubits, i.e., exploiting the hybrid entanglement between different physical degrees of freedom”, says Professor Jyrki Piilo from the University of Turku.

Conventionally, the polarisation of photons has been used for the entanglement of qubits in teleportation, while the current approach exploits the hybrid entanglement between the photons’ polarisation and frequency.

“This allows for a significant change in how the noise influences the protocol, and as a matter of fact our discovery reverses the role of the noise from being harmful to being beneficial to teleportation”, Piilo describes.

With conventional qubit entanglement in the presence of noise, the teleportation protocol does not work. In a case where there is initially hybrid entanglement and no noise, the teleportation does not work either.

“However, when we have hybrid entanglement and add noise, the teleportation and quantum state transfer occur in almost perfect manner”, says Dr Olli Siltanen whose doctoral dissertation presented the theoretical part of the current research.
In general, the discovery enables almost ideal teleportation despite the presence of certain type of noise when using photons for teleportation.

“While we have done numerous experiments on different facets of quantum physics with photons in our laboratory, it was very thrilling and rewarding to see this very challenging teleportation experiment successfully completed”, says Dr Zhao-Di Liu from the University of Science and Technology of China, Hefei.

“This is a significant proof-of-principle experiment in the context of one of the most important quantum protocols”, says Professor Chuan-Feng Li from the University of Science and Technology of China, Hefei.

Teleportation has important applications, e.g., in transmitting quantum information, and it is of utmost importance to have approaches that protect this transmission from noise and can be used for other quantum applications. The results of the current study can be considered as basic research that carries significant fundamental importance and opens intriguing pathways for future work to extend the approach to general types of noise sources and other quantum protocols.
Zhao-Di Liu et al.
Overcoming noise in quantum teleportation with multipartite hybrid entanglement.
Sci. Adv.10,eadj3435(2024).
DOI:10.1126/sciadv.adj3435
Regions: Europe, Finland, Asia, China
Keywords: Science, Physics

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement