New AI tool efficiently detects asbestos in roofs so it can be removed
en-GBde-DEes-ESfr-FR

New AI tool efficiently detects asbestos in roofs so it can be removed


A team of researchers from the Universitat Oberta de Catalunya (UOC) has designed and tested a new system for detecting asbestos that has not yet been removed from the roofs of buildings, despite regulatory requirements. The software, developed in partnership with DetectA, applies artificial intelligence, deep learning and computer vision methods to aerial photographs, using RGB images, which are the most common and economical type. This represents a very important competitive advantage over previous attempts to create a similar system, which required multiband images that are more complex and difficult to obtain. The success of this much more scalable project will allow the removal of this highly toxic building material to be more systematically and effectively monitored.

"Unlike infrared or hyperspectral imaging methods, our decision to train AI with RGB images ensures the methodology is versatile and adaptable. In Europe and many other countries around the world this type of aerial imaging is freely available in very high resolutions," explained Javier Borge Holthoefer, lead researcher of the Complex Systems group (CoSIN3) at the Internet Interdisciplinary Institute (IN3). Borge Holthoefer is leading this research, together with Àgata Lapedriza, researcher with the eHealth Center's Artificial Intelligence for Human Well-being group (AIWELL) and a member of the UOC's Faculty of Computer Science, Multimedia and Telecommunications. Their research has been published as open access in Remote Sensing. UOC doctoral students Davoud Omarzadeh, Adonis González-Godoy, Cristina Bustos and Kevin Martín Fernández also contributed to the project, together with the founders of DetectA, Carles Scotto and César Sánchez.

The researchers trained the deep learning system using thousands of photographs held by the Cartographic and Geological Institute of Catalonia, teaching the AI tool which roofs contain asbestos and which do not. 2,244 images were used (1,168 positive for asbestos and 1,076 negative). 80% were used to train and validate the system, with the remaining images reserved for the final test. The software is now able to determine if asbestos is present in new images by assessing different patterns, such as the colour, texture and structure of the roofs, as well as the area surrounding the buildings. The project will be useful in urban, industrial, coastal and rural areas. By law, municipalities should have performed a survey of buildings containing asbestos by April 2023, but not all of them have yet done so.

Hyperspectral photographs make it easier to detect asbestos, because they contain many more layers of information, but they are not ideal for developing an efficient detection method, due to their limited availability and the high cost of obtaining them. The system developed by the UOC researchers is the first to use RGB images, which can be taken from aircraft and are commonly used by many countries' cartographic services. "Although these images contain less information, we have achieved comparable results by training the deep learning system well, with a success rate of over 80%," explained the CoSIN3 researcher.


Banned for over two decades

More than twenty years after its use in construction was banned, asbestos remains a major public health problem. It is estimated that, in Catalonia alone, over four million tonnes of asbestos fibre cement is still in place. According to the World Health Organization it causes more than 100,000 deaths a year globally, mainly from lung cancer, but also other conditions including pleural tumours and pulmonary fibrosis. The legal target for removing asbestos from public buildings is 2028 and the target for private buildings is 2032.

The development of this technological solution will contribute to tackling one of the key issues in the fight against asbestos: how authorities can identify which roofs contain asbestos, so it can be removed by qualified, accredited professionals. "There is currently no protocol or effective system for locating the asbestos that is still out there, because it is expensive and time-consuming to inventorize using people on the ground," said Borge Holthoefer.

Now his team is looking into expanding the AI system training base in order to make it as effective in rural environments as it is in urban and industrial locations, where it is a little more reliable because the system was trained with more data from these areas, and also because asbestos wear and conservation is different in rural conditions, and it may be covered by layers of vegetation.


This research project contributes to the UN's Sustainable Development Goals (SDGs) 3 (Good Health and Well-being), 9 (Industry, Innovation and Infrastructure) and 11 (Sustainable Cities and Communities).
Omarzadeh D, González-Godoy A, Bustos C, Martín-Fernández K, Scotto C, Sánchez C, Lapedriza A, Borge-Holthoefer J. Explainable Automatic Detection of Fiber–Cement Roofs in Aerial RGB Images. Remote Sensing. 2024; 16(8):1342. https://doi.org/10.3390/rs16081342
Regions: Europe, Spain
Keywords: Applied science, Artificial Intelligence, Computing, Technology, Health, Environmental health, Policy

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement