How immune cells communicate to fight viruses - Bonn researchers develop new techniques to analyse the communication of immune cells in the defence against infection
en-GBde-DEes-ESfr-FR

How immune cells communicate to fight viruses - Bonn researchers develop new techniques to analyse the communication of immune cells in the defence against infection


Chemokines are signalling proteins that orchestrate the interaction of immune cells against pathogens and tumours. To understand this complex network, various techniques have been developed to identify chemokine-producing cells. However, it has not yet been possible to determine which cells react to these chemokines. Researchers at the University Hospital Bonn (UKB) and the University of Bonn have developed a new class of genetically modified mice that enables the simultaneous identification of chemokine producers and sensors. Using the chemokine Ccl3 as a “proof of principle”, they discovered that its function in the immune defence against viruses is different than had been previously assumed. Their results have now been published in the "Journal of Experimental Medicine".

Our immune response to infections is critically controlled by chemokines. In order to understand how these signalling proteins coordinate immune cells, researchers from Bonn took a closer look at the chemokine Ccl3. Using a novel technology known as Ccl3-EASER mice, they investigated its role in coordinating the immune response to cytomegalovirus (CMV) infection, which can lead to severe diseases in immunocompromised individuals. "Until now, it was thought that certain macrophages, cells which colonize all organs as immune guardians, produce Ccl3 to attract antiviral immune cells," says co-senior author Prof. Dr. Christian Kurts, Director of the Institute of Molecular Medicine and Experimental Immunology (IMMEI) at the UKB. He is also a member of the Transdisciplinary Research Area 3 (TRA 3) "Life & Health" and the Cluster of Excellence Immunosensation2 at the University of Bonn.

NK cells are both chemokine producers and sensors

"However, we actually found that the natural killer cells - NK cells for short - are the most important Ccl3 producers during CMV infection," says co-senior author Prof. Dr. Natalio Garbi, research group leader from IMMEI at the UKB. He is also a member of the Cluster of Excellence Immunosensation2 at the University of Bonn. NK cells are white blood cells that can directly destroy virus-infected body cells. The scientists found that NK cells are in a permanent alarm mode to be ready for rapid Ccl3 production. As soon as a viral infection occurs, the body releases type I interferon as an alarm signal. This triggers the NK cells to rapidly produce the chemokine Ccl3. "However, NK cells are not only the cellular source, i.e. the producers of Ccl3, but also the main sensors for the chemokine in this context," says co-senior author Prof. Dr. Niels A. Lemmermann, research group leader from the Institute of Virology at the UKB and member of the Cluster of Excellence Immunosensation2 at the University of Bonn. This means that Ccl3 acts as an auto/paracrine signal through which NK cells communicate directly with each other and coordinate their antiviral response.

"The experimental strategy used here is completely new. It can also be used for messenger substances other than Ccl3, which are released during various infections, diverse forms of inflammation or cancers," explains Dr. Maria Belen Rodrigo, first author and scientist at the IMMEI of the UKB. With this work, the Bonn researchers have succeeded in gaining a better understanding of the complex choreography of immune cells in the defence against viruses.

Promotion:
The study was funded by the German Research Foundation (DFG) [SFB TRR 237, SFB 1454, SFB 1292/2] and the Cluster of Excellence ImmunoSensation2 of the University of Bonn.

Publication:
M. Belen Rodrigo et al; Dual fluorescence reporter mice for Ccl3 transcription, translation and intercellular communication; Journal of Experimental Medicine; DOI: 10.1084/jem.20231814
M. Belen Rodrigo et al; Dual fluorescence reporter mice for Ccl3 transcription, translation and intercellular communication; Journal of Experimental Medicine;
DOI: 10.1084/jem.20231814
Attached files
  • Bonn researchers provide insight into the choreography of immune cells during the fight against viruses:(from left) Prof. Niels Lemmermann; Prof. Natalio Garbi, Dr. Maria Belen Rodrigo and Prof. Christian Kurts; Picture credits: University Hospital Bonn (UKB) / Alessandro Winkler
Regions: Europe, Germany
Keywords: Health, Medical

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement