Harvesting vibrational energy from coloured noise
en-GBde-DEes-ESfr-FR

Harvesting vibrational energy from coloured noise

18/04/2024 SciencePOD


Two engineers from Beijing Institute of Technology in China have shown how to optimise the output of a device that can convert ambient vibrational energy into useful electric power.

Clare Sansom, SciencePOD

The energy demands of today’s ubiquitous small electronic devices – including sensors, data transmitters, medical implants and ‘wearable’ consumer products such as Fitbits – can no longer be met by chemical batteries alone. This gap can be filled by energy harvesters, which turn ordinary, ambient vibrational energy into electrical energy. The most efficient types of harvester are tri-stable energy harvesters, which can convert even low-frequency random vibrations into alternating current (AC) and thence into direct current (DC). Tingting Zhang and Yanfei Jin from Beijing Institute of Technology in China have now investigated how the properties of these systems can be altered to optimise the power output; their findings are published in EPJ B.

Tri-stable energy harvesters are examples of non-linear energy harvesters, which can use a wider bandwidth of vibrations than the earlier, linear ones. They convert mechanical energy from random vibrations in the environment directly into AC and then, via a rectifier circuit, into the DC that powers electronic devices.

“Control methods can be used to enhance the energy harvesting ability of this system,” says Jin. “We optimised the control of a tri-stable energy harvester under a parallel synchronised switching system, or P-SSHI, to obtain the most efficient DC power output from coloured noise”.

Coloured noise is defined as a random vibrational signal in which different vibrational frequencies are present with varying intensities. Jin and Zhang used it for their experiments because it resembles the random vibrations of a natural environment.

“We showed that an energy harvester that is controlled in this way is more efficient than one without control, and our theoretical calculations were well supported by Monte Carlo simulations,” adds Jin. “We now hope to optimise the design of the management circuit, which is crucial for the energy supply of these small, low-power electronic devices.”

Reference
T. Zhang and Y. Jin, ‘Stochastic optimal control of a tri-stable energy harvester with the P-SSHI circuit under colored noise,’ Eur. Phys. J. B 7:10 (2024). https://doi.org/10.1140/epjb/s10051-024-00650-2
18/04/2024 SciencePOD
Regions: Europe, Ireland, Asia, China
Keywords: Applied science, Technology, Science, Physics, Energy

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement