ALMA Finds New Molecular Signposts in Starburst Galaxy
en-GBde-DEes-ESfr-FR

ALMA Finds New Molecular Signposts in Starburst Galaxy


The ALMA radio telescope has detected more than 100 molecular species, including many indicative of different star formation and evolution processes, in a galaxy where stars are forming much more actively than in the Milky Way. This is far more molecules than were found in previous studies. Now the team will try to apply this knowledge to other galaxies.

A team of researchers led by Sergio Martin of the European Southern Observatory/Joint ALMA Observatory, Nanase Harada of the National Astronomical Observatory of Japan, and Jeff Mangum of the National Radio Astronomy Observatory used ALMA (Atacama Large Millimeter/submillimeter Array) to observe the center of a galaxy known as NGC 253. NGC 253 is located about 10 million light-years away in the direction of the constellation Sculptor. NGC 253 is an example of a starburst galaxy, a galaxy where many new stars are forming rapidly. The factors leading to the onset of a starburst are still not well understood.

The birth, evolution, and death of stars change the molecular composition of the surrounding gas. ALMA’s high sensitivity and high resolution allowed astronomers to determine the locations of molecules indicative of the various stages in the life cycle of stars. This survey, dubbed ALCHEMI (ALMA Comprehensive High-resolution Extragalactic Molecular Inventory), found high-density molecular gas that is likely promoting active star formation in this galaxy. The amount of dense gas in the center of NGC 253 turned out to be more than 10 times higher than that in the center of the Milky Way, which could explain why NGC 253 is forming stars about 30 times more efficiently.

The ALCHEMI survey also provided an atlas of 44 molecular species, doubling the number available from previous studies outside the Milky Way. By applying a machine-learning technique to this atlas, the researchers were able to identify which molecules serve as the best signposts to trace the story of star formation from the beginning to the end. This knowledge will help in planning future ALMA observations.

Nanase Harada et al. “The ALCHEMI Atlas: Principal Component Analysis Reveals Starburst Evolution in NGC 253”, in The Astrophysical Journal Supplement Series, DOI: 10.3847/1538-4365/ad1937

This press release is also related to 12 other papers. For detail, please refer https://alma-telescope.jp/en/news/starfactory-202403
Attached files
  • Excerpts from the ALCHEMI atlas of the center of NGC 253. The different colors represent the distribution of molecular gas (blue), shocked regions (red), relatively high-density regions (orange), young starbursts (yellow), developed starbursts (magenta), and molecular gas affected by cosmic-ray ionization (cyan). (Credit: ALMA (ESO/NAOJ/NRAO), N. Harada et al.)
Regions: Asia, Japan
Keywords: Science, Space Science

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement