Open waste burning linked to air pollution in Northwestern Greenland
en-GBde-DEes-ESfr-FR

Open waste burning linked to air pollution in Northwestern Greenland

28/03/2024 Hokkaido University

A case study on the effects of open waste burning on air quality in Northwestern Greenland calls attention to the importance of no-one-left-behind sustainable air quality monitoring in the Arctic region.

To better understand the air quality risks faced by remote Arctic communities, an international team monitored aerial pollutants at a community in Northwestern Greenland. Their findings, published in Atmospheric Science Letters, reveal that open waste burning elevates the concern of health risks to the community.

The study focused on Qaanaaq, a small village in Northwestern Greenland with a population of approximately 600. During the summer of 2022, the team conducted the first-time measurement of particulate matter (PM2.5) in the ambient air there and identified an increase in PM2.5 pollution. PM2.5 refers to tiny particles with a diameter of 2.5 micrometers or less, such as dust and smoke.

PM2.5 pollution is closely linked with severe air pollution and is particularly harmful to human health; PM2.5 exposures are correlated with a spectrum of health problems, including respiratory ailments such as asthma and bronchitis, cardiovascular diseases, and even premature death.

Monitoring PM2.5 levels is important for assessing air quality and protecting public health. However, compared to the mid-latitudes, the PM2.5 observations in high-latitude regions are relatively left behind (i.e., fewer PM2.5 observations) in terms of the SDG’s mission statement.

The research team, which included researchers from Hokkaido University, the University of Tsukuba, Nagoya University, and NASA, and was led by Associate Professor & Distinguished Researcher Teppei J. Yasunari at the Arctic Research Center, used commercially available advanced PM2.5 measurement systems for cold regions, which was updated from their previous research, to collect continuous PM2.5 data spanning the period from July 20 to August 13, 2022. Their analysis uncovered multiple instances of heightened PM2.5 levels, particularly notable from August 8 onwards. These increases were attributed to local open waste burning activities, as evidenced by the visible black smoke emitted from the Qaanaaq dump site on the same day with combined data analyses using NASA’s re-analysis data and NOAA’s HYSPLIT model online simulations.

Although further investigation indicated that pollutants originating from sources outside of the study area may have also contributed some during the early stages of the study, the analyses indicated these contributions were minimal, highlighting the significant impact of local pollution sources on air quality in Qaanaaq. The hourly mean PM2.5 concentrations did not reach alarming levels during the measurement period. However, additional analysis based on the NOAA HYSPLIT online dispersion simulations also implied that there were likely particulate matter depositions from the open waste burning to the nearby sea areas, including Baffin Bay, suggesting important research targets in environmental science in the future.

“This is the first time we've studied PM2.5 in a small Arctic residential area of Northwestern Greenland where we didn't know the air quality before. We found out how much pollution increases with PM2.5 during local open waste burning,” Yasunari said. “Now, Qaanaaq uses an incinerator, stopping open waste burning. But, continuous air quality monitoring is crucial because pollution doesn't choose timing or stop at borders.” He emphasizes the need for healthy air for everyone, Arctic residents included, underlining continuous monitoring as essential for long-term health, in line with the SDGs.

===

Funding:
This study was supported by grants from the Arctic Challenge for Sustainability II project (ArCSII: JPMXD1420318865) funded by the Ministry of Education, Culture, Sports, Science, and Technology Japan (MEXT); and a Grant-in-Aid for Scientific Research (B) (KAKENHI: JP19H01976) funded by the Japan Society for the Promotion of Science (JSPS).

Teppei J. Yasunari, et al. Increased atmospheric PM2.5 events due to open waste burning in Qaanaaq, Greenland, summer of 2022. Atmospheric Science Letters. March 26, 2024. https://doi/org/10.1002/asl.1231
Attached files
  • Open waste burning in Qaanaaq. (Teppei J. Yasunari, et al. Atmospheric Science Letters. March 26, 2024)
  • Tomoki Kajikawa, co-author of the study, installing the PM2.5 measurement system at the site in Qaanaaq (Photo provided by Tomoki Kajikawa)
  • Visible smoke from open waste burning in Qaanaaq on August 8, 2022, and days of continuously increased PM2.5 from that day onwards. (Teppei J. Yasunari, et al. Atmospheric Science Letters. March 26, 2024)
  • (From left) Teppei J. Yasunari, Tomoki Kajikawa, and Yutaka Matsumi of the research team. (Photos: Teppei J. Yasunari, Tomoki Kajikawa, Yutaka Matsumi)
28/03/2024 Hokkaido University
Regions: Asia, Japan, Europe, Greenland
Keywords: Science, Environment - science, Earth Sciences

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement