Breakthrough in Intractable Intestinal Disease Treatment Using Xenogeneic-Free Intestinal Stem Cells​
en-GBde-DEes-ESfr-FR

Breakthrough in Intractable Intestinal Disease Treatment Using Xenogeneic-Free Intestinal Stem Cells​


Intestinal Stem Cells (ISCs) derived from a patient's own cells have garnered significant attention as a new alternative for treating intractable intestinal diseases due to their low risk of rejection. However, clinical application has been limited by safety and regulatory issues arising from conventional culture methods that rely on animal-derived components (xenogeneic components). A KAIST research team has developed an advanced culture technology that stably grows ISCs without animal components while simultaneously enhancing their migration to damaged tissues and regenerative capabilities.

KAIST announced on December 23rd that a joint research team—led by Professor Sung Gap Im from the Department of Chemical and Biomolecular Engineering, Dr. Tae Geol Lee from the Nano-Bio Measurement Group at the Korea Research Institute of Standards and Science and Dr. Mi-Young Son from the Stem Cell Convergence Research Center at the Korea Research Institute of Bioscience and Biotechnology has developed a polymer-based culture platform that dramatically improves the migration and regeneration of ISCs in a xenogeneic-free environment.

To overcome obstacles in the clinical application of stem cell therapies—such as the risk of virus transmission to patients when using substances derived from mouse fibroblasts or Matrigel—the joint research team developed "PLUS" (Polymer-coated Ultra-stable Surface). This polymer-based culture surface technology functions effectively without any animal-derived materials.

PLUS is a synthetic polymer surface coated via a vapor deposition method. By precisely controlling surface energy and chemical composition, it significantly enhances the adhesion and mass-culture efficiency of ISCs. Notably, it maintains identical culture performance even after being stored at room temperature for three years, securing industrial scalability and storage convenience for stem cell therapeutics.

Through proteomics analysis*, the research team identified that the expression of proteins related to cytoskeletal reorganization significantly increased in ISCs cultured on the PLUS environment.

Proteomics Analysis: A method used to simultaneously analyze the types and quantitative changes of all proteins present within a cell or tissue.

Specifically, the team confirmed that increased expression of cytoskeleton-binding and actin-binding proteins leads to a stable restructuring of the internal cellular architecture. This provides the power source for stem cells to move faster and more actively across the substrate.

Real-time observations using holotomography microscopy revealed that ISCs cultured on PLUS exhibited a migration speed approximately twice as fast as those on conventional surfaces. Furthermore, in a damaged tissue model, the cells demonstrated outstanding regenerative performance, repairing more than half of the damage within a single week. This proves that PLUS activates the cytoskeletal activity of stem cells, thereby boosting their practical tissue regeneration capabilities.

The newly developed PLUS culture platform is evaluated as a technology that will significantly enhance the safety, mass production, and clinical feasibility of ISCs derived from human pluripotent stem cells (hPSCs). By elucidating the mechanism that simultaneously strengthens the survival, migration, and regeneration of stem cells in a xenogeneic-free environment, the team has established a foundation to fundamentally resolve safety, regulatory, and productivity issues in stem cell therapy.

Professor Sung Gap Im of KAIST stated, "This research provides a synthetic culture platform that eliminates the dependence on xenogeneic components—which has hindered the clinical application of stem cell therapies—while maximizing the migration and regenerative capacity of stem cells. It will serve as a catalyst for a paradigm shift in the field of regenerative medicine."

Dr. Seonghyeon Park (KAIST), Sang Yu Sun (KAIST), and Dr. Jin Gyeong Son (KRISS) participated as first authors. The research findings were published online on November 26th in Advanced Materials, the leading academic journal in materials science.

  • Paper Title: Tailored Xenogeneic-Free Polymer Surface Promotes Dynamic Migration of Intestinal Stem Cells
  • DOI: 10.1002/adma.202513371

This research was conducted with support from the Ministry of Science and ICT, the Ministry of SMEs and Startups, the National Research Foundation of Korea, the National Council of Science and Technology Research, KRISS, KRIBB, and the National NanoFab Center.

Attached files
Regions: Asia, South Korea, Extraterrestrial, Sun
Keywords: Applied science, Technology, Health, Medical, Well being, Science, Life Sciences

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement