Integrating Credit and Debit Data for Enhanced Insights into Borrowing Behavior and Predictive Modeling of Credit Card Delinquency
en-GBde-DEes-ESfr-FR

Integrating Credit and Debit Data for Enhanced Insights into Borrowing Behavior and Predictive Modeling of Credit Card Delinquency

12/12/2025 TranSpread

A new study published in The Journal of Finance and Data Science shows that combining credit card data with customers’ debit transactions substantially improves the ability to predict credit card delinquency. The research team comprising Håvard Huse (BI Norwegian Business School), Sven A. Haugland (NHH) and Auke Hunneman (BI)—developed a hierarchical Bayesian behavioral model that consistently outperforms leading machine-learning algorithms such as XGBoost, GBM, neural networks, and stacked ensembles.

“Credit data alone gives only a partial picture of a customer’s financial situation,” explains first author Håvard Huse. “By integrating debit transactions, we gain insight into payday spending, repayment behavior, and income patterns—factors that strongly influence whether someone is at risk of missing payments.”

The study draws on detailed credit and debit transaction data from a large Norwegian bank. Traditional credit-risk models rely heavily on monthly aggregates such as balance and credit limit, but these measures do not reveal how customers actually manage their finances day-to-day. “By capturing behavioral dynamics—such as how repayment patterns evolve over time and how spending spikes after payday—the new model explains both why delinquency occurs and who is likely to default.” Shares Huse.

The model also improves prediction accuracy at the individual level and identifies distinct behavioral segments with different “memory lengths”—the extent to which past financial states affect current repayment behavior. “Customers in financial distress tend to be more influenced by earlier months’ behavior, and our model captures this dynamic far better than standard machine-learning tools,” notes co-author Auke Hunneman.

Notably, the team’s approach performs better than state-of-the-art algorithms, but it is also more interpretable. “Banks not only need accurate predictions—they also need to understand which behavioral patterns drive risk,” adds Hunneman.

The authors also illustrate the practical value of their model. Using a three-month prediction horizon, early detection of at-risk cardholders could generate substantial cost savings by enabling timely intervention and reducing losses. “For banks, this is more than an accuracy improvement—it is a way to proactively help customers avoid serious financial problems,” says co-author Sven A. Haugland.

The findings highlight an emerging shift in credit scoring: from traditional static models toward richer behavioral analytics based on a full picture of customer transactions.

###

References

DOI

10.1016/j.jfds.2025.100166

Original Source URL

https://doi.org/10.1016/j.jfds.2025.100166

Funding Information

This research received no specific external funding.

About Journal of Finance and Data Science (JFDS)

The Journal of Finance and Data Science (JFDS) is the leading interdisciplinary journal on finance and data science, providing detailed analyses of theoretical and empirical foundations and their applications in financial economics.

Paper title: Integrating credit and debit data for enhanced insights into borrowing behavior and predictive modeling of credit card delinquency
Attached files
  • Table showing the improved performance of the credit-risk model combining credit and debit data.
12/12/2025 TranSpread
Regions: North America, United States, Europe, Norway
Keywords: Society, Economics/Management

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement