Electrodes created using light
en-GBde-DEes-ESfr-FR

Electrodes created using light


Visible light can be used to create electrodes from conductive plastics completely without hazardous chemicals. This is shown in a new study carried out by researchers at Linköping and Lund universities. The electrodes can be created on different types of surfaces, which opens up for a new type of electronics and medical sensors.

“I think this is something of a breakthrough. It’s another way of creating electronics that is simpler and doesn’t require any expensive equipment,” says Xenofon Strakosas, assistant professor at the Laboratory of Organic Electronics, LOE, at Linköping University.

LOE’s researchers are working with conductive plastics, also known as conjugated polymers, to develop new technologies in areas such as medicine and renewable energy. Conjugated polymers combine the electrical properties of metals and semiconductors with the flexibility of plastics.

Polymers consist of long chains of hydrocarbons. Each link in the chain is called a monomer. When the monomers are connected, polymers are formed. The process, called polymerisation, is often carried out using strong and sometimes toxic chemicals, which limits the ability to scale up the process and use the technology in e.g. medicine.

The Campus Norrköping researchers, together with colleagues in Lund and New Jersey, have now succeeded in creating a method where polymerisation can happen using visible light only. This is possible due to specially designed water-soluble monomers developed by the researchers. Thus, no toxic chemicals, harmful UV light or subsequent processes are needed to create the electrodes.

“It’s possible to create electrodes on different surfaces such as glass, textiles and even skin. This opens up a much wider range of applications,” says Xenofon Strakosas.

In practice, the solution containing the monomers could be placed on a substrate. Using, for example, a laser or other light source, it is possible to create electrodes in intricate patterns directly on the surface. The solution that is not polymerised can then be rinsed away and the electrodes remain.

“The electrical properties of the material are at the very forefront. As the material can transport both electrons and ions, it can communicate with the body in a natural way, and its gentle chemistry ensures that tissue tolerates it – a combination that is crucial for medical applications,” says Tobias Abrahamsson, researcher at LOE and lead author of the article published in the scientific journal Angewandte Chemie.

The researchers have tested the technology by photo-patterning electrodes directly onto the skin of anaesthetised mice. The results show a clear improvement in the recording of low-frequency brain activity compared to traditional metal EEG electrodes.

“As the method works on many different surfaces, you can also imagine sensors built into garments. In addition, the method could be used for large-scale manufacture of organic electronics circuits, without dangerous solvents,” says Tobias Abrahamsson.

The research was funded mainly by the European Research Council, the Swedish Research Council, the Swedish Foundation for Strategic Research, the Knut and Alice Wallenberg Foundation, the Stig Wadström Foundation, the Åke Wiberg Foundation and via the Swedish Government’s Strategic Research Area in Advanced Functional Materials (AFM) at Linköping University.
Visible-Light-Driven Aqueous Polymerization Enables in Situ Formation of Biocompatible, High-Performance Organic Mixed Conductors for Bioelectronics,
Tobias Abrahamsson, Fredrik Ek, Rémy Cornuéjols, Donghak Byun, Marios Savvakis, Cecilia Bruschi, Ihor Sahalianov, Eva Miglbauer, Chiara Musumeci, Mary J. Donahue, Ioannis Petsagkourakis, Maciej Gryszel, Martin Hjort, Jennifer Y. Gerasimov, Glib Baryshnikov, Renee Kroon, Daniel T. Simon, Magnus Berggren, Ilke Uguz, Roger Olsson, Xenofon Strakosas, Angewandte Chemie, published online 10 November 2025. DOI: 10.1002/ange.202517897
Attached files
  • The technique requires no advanced laser setups: visible light from simple LED lamps, such as a party light, can drive the polymerisation.Credit: Thor BalkhedUsage: The contents may be downloaded, used and shared in media channels by, for example, journalists, bloggers, writers, pundits, etc., for purposes of communication, description and commenting on your press release, post or information, on the condition that the contents are used unchanged and in their entirety. The creator must be specified to the extent and in the manner required by good publishing practice (which means, among other things, that the photographer of any photographs must nearly always be specified).
  • Xenofon Strakosas, assistant professor at the Laboratory of Organic Electronics, LOE, at Linköping University.Credit: Thor BalkhedUsage: The contents may be downloaded, used and shared in media channels by, for example, journalists, bloggers, writers, pundits, etc., for purposes of communication, description and commenting on your press release, post or information, on the condition that the contents are used unchanged and in their entirety. The creator must be specified to the extent and in the manner required by good publishing practice (which means, among other things, that the photographer of any photographs must nearly always be specified).
  • Tobias Abrahamsson, researcher at the Laboratory of Organic Electronics, LOE, at Linköping University.Credit: Thor BalkhedUsage: The contents may be downloaded, used and shared in media channels by, for example, journalists, bloggers, writers, pundits, etc., for purposes of communication, description and commenting on your press release, post or information, on the condition that the contents are used unchanged and in their entirety. The creator must be specified to the extent and in the manner required by good publishing practice (which means, among other things, that the photographer of any photographs must nearly always be specified).
Regions: Europe, Sweden
Keywords: Science, Chemistry, Health, Medical, Applied science, Engineering, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement