Docosahexaenoic acid has therapeutic potential for myocardial infarction
en-GBde-DEes-ESfr-FR

Docosahexaenoic acid has therapeutic potential for myocardial infarction

31/10/2025 Frontiers Journals

Adult zebrafish (Danio rerio) and neonatal mice can fully regenerate their hearts after partial amputation through proliferation of pre-existing cardiomyocytes (CMs). However, the adult mammalian heart has limited regenerative capability following cardiac damage. The limited regenerative capability of mammalian hearts following cardiac damage is a major barrier in cardiovascular medicine and often leads to heart failure. The reason for this regeneration discrepancy remains elusive. Here, a study from Jun Chen’s lab of Zhejiang university reveals that Docosahexaenoic acid (DHA) is accumulated only in the injury hearts of zebrafish and neonatal mice, but not of adult mice, which coincides with the upregulation of DHA synthesis genes in CMs, fibrobasts and macrophages near the injury areas. Inhibition of Fads2, a DHA synthesis enzyme, impairs heart regeneration in both zebrafish and neonatal mice. Injection of DHA remodels transcriptome from injury response to regeneration response and improves cardiac function in adult mice after myocardial infarction. Interestingly, DHA facilitates CM proliferation, but inhibits fibrosis and inflammation. Mechanistically, only DHA, but not oleic acid (OA), can trigger the peroxisome proliferator-activated receptor d (Ppard) to bind to the promoter regions of heart regeneration related genes such as: Mef2d, Phlda3 and Txndc5 to regulate their expression (Fig. 1). Molecular docking, molecular dynamics simulations and mutagenesis experiments suggest that DHA binds to PPARD in a distinct manner compared to OA, which may help explain their differing abilities to influence the expression of heart regeneration genes. The findings demonstrate that the DHA signal plays an essential and evolutionarily conserved role in heart regeneration and provide a therapeutic potential for myocardial infarction.
DOI:https://doi.org/10.1093/procel/pwaf062
Reference:
Zimu Tang, Zhaoxiang Sun, Chun Yang, Qian Gong, Zirui Liu, Nanhui Chen, Kai Liu, Yong Wang, Ting Zhao, Shengfan Ye, Lenan Zhuang, Jiahao Lin, Wei-Qiang Tan, Jinrong Peng, Jun Chen, Accumulation of newly synthesized docosahexaenoic acid plays an essential role in heart regeneration, Protein & Cell, 2025;, pwaf062, https://doi.org/10.1093/procel/pwaf062
Attached files
  • Fig. 1 Model of DHA function in heart regeneration. De novo synthesized DHA triggers heart regeneration response by activating Ppard, which promotes cardiomyocyte proliferation through regulating the expression of heart regeneration regulators (enhancing Mef2d, and repressing Phlda3 and Txndc5).
31/10/2025 Frontiers Journals
Regions: Asia, China
Keywords: Science, Life Sciences

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement