“AI,” the New Language of Materials Science and Engineering Spoken at KAIST​
en-GBde-DEes-ESfr-FR

“AI,” the New Language of Materials Science and Engineering Spoken at KAIST​


Collaborating authors include Professor Joshua Agar (Drexel University), Professors Chris Wolverton and Peter Voorhees (Northwestern University), Professor Peter Littlewood (University of St Andrews), and Professor Sergei Kalinin (University of Tennessee).

Paper Title: Artificial Intelligence for Materials Discovery, Development, and Optimization

The era has arrived in which artificial intelligence (AI) autonomously imagines and predicts the structures and properties of new materials. Today, AI functions as a researcher’s “second brain,” actively participating in every stage of research, from idea generation to experimental validation.

KAIST (President Kwang Hyung Lee) announced on October 26 that a comprehensive review paper analyzing the impact of AI, Machine Learning (ML), and Deep Learning (DL) technologies across materials science and engineering has been published in ACS Nano (Impact Factor = 18.7). The paper was co-authored by Professor Seungbum Hong and his team from the Department of Materials Science and Engineering at KAIST, in collaboration with researchers from Drexel University, Northwestern University, the University of St Andrews, and the University of Tennessee in the United States.

The research team proposed a full-cycle utilization strategy for materials innovation through an AI-based catalyst search platform, which embodies the concept of a Self-Driving Lab—a system in which robots autonomously perform materials synthesis and optimization experiments.

Professor Hong’s team categorized materials research into three major stages—Discovery, Development, and Optimization—and detailed the distinctive role of AI in each phase:

In the Discovery Stage, AI designs new structures, predicts properties, and rapidly identifies the most promising materials among vast candidate pools.

In the Development Stage, AI analyzes experimental data and autonomously adjusts experimental processes through Self-Driving Lab systems, significantly shortening research timelines.

In the Optimization Stage, AI employs Reinforcement Learning, which identifies optimal conditions through Bayesian Optimization, which efficiently finds superior results with minimal experimentation, to fine-tune designs and process conditions for maximum performance.

In essence, AI serves as a “smart assistant” that narrows down the most promising materials, reduces experimental trial and error, and autonomously optimizes experimental conditions to achieve the best-performing outcomes.

The paper further highlights how cutting-edge technologies such as Generative AI, Graph Neural Networks (GNNs), and Transformer models are transforming AI from a computational tool into a “thinking researcher.” Nonetheless, the team cautions that AI’s predictions are not error-proof and that key challenges persist, such as imbalanced data quality, limited interpretability of AI predictions, and integration of heterogeneous datasets.

To address these limitations, the authors emphasize the importance of developing AI systems capable of autonomously understanding physical principles and ensuring transparent, verifiable decision-making processes for researchers.

The review also explores the concept of the Self-Driving Lab, where AI autonomously designs experimental plans, analyzes results, and determines the next experimental steps—without manual operation by researchers. The AI-Based Catalyst Search Platform exemplifies this concept, enabling robots to automatically design, execute, and optimize catalyst synthesis experiments.

In particular, the study presents cases in which AI-driven experimentation has dramatically accelerated catalyst development, suggesting that similar approaches could revolutionize research in battery and energy materials.

“This review demonstrates that artificial intelligence is emerging as the new language of materials science and engineering, transcending its role as a mere tool,” said Professor Seungbum Hong. “The roadmap presented by the KAIST team will serve as a valuable guide for researchers in Korea’s national core industries including batteries, semiconductors, and energy materials.”

Benediktus Madika (Ph.D. candidate), Aditi Saha (Ph.D. candidate), Chaeyul Kang (M.S. candidate), and Batzorig Buyantogtokh (Ph.D. candidate) from KAIST’s Department of Materials Science and Engineering contributed as co-first authors.

Collaborating authors include Professor Joshua Agar (Drexel University), Professors Chris Wolverton and Peter Voorhees (Northwestern University), Professor Peter Littlewood (University of St Andrews), and Professor Sergei Kalinin (University of Tennessee).

Paper Title: Artificial Intelligence for Materials Discovery, Development, and Optimization

DOI: 10.1021/acsnano.5c04200

This work was supported by the National Research Foundation of Korea (NRF) with funding from the Ministry of Science and ICT (RS-2023-00247245).

Attached files
Regions: Asia, South Korea, North America, United States
Keywords: Applied science, Artificial Intelligence, Computing, Engineering, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement