KAIST, Cancer Cell Nuclear Hypertrophy May Suppress Spread​
en-GBde-DEes-ESfr-FR

KAIST, Cancer Cell Nuclear Hypertrophy May Suppress Spread​


In tissue biopsies, cancer cells are frequently observed to have nuclei (the cell's genetic information storage) larger than normal. Until now, this was considered a sign that the cancer was worsening, but the exact cause and effect had not been elucidated. In this study, the KAIST research team found that cancer cell nuclear hypertrophy is not a cause of malignancy but a temporary response to replication stress, and that it can, in fact, suppress metastasis. This discovery is expected to lead to the development of new diagnostic and therapeutic strategies for cancer and metastasis inhibition.

KAIST (President Kwang Hyung Lee) announced on the September 26th that a research team led by Professor Joon Kim of the Graduate School of Medical Science and Engineering, in collaboration with the research teams of Professor Ji Hun Kim and Professor You-Me Kim, discovered the molecular reason why the nucleus enlarges in cancer cells. This achievement provides an important clue for understanding nuclear hypertrophy, a phenomenon frequently observed in pathological examinations but whose direct cause and relationship with cancer development were unclear.

The research team confirmed that DNA replication stress (the burden and error signal that occurs when a cell copies its DNA), which is common in cancer cells, causes the 'actin' protein inside the nucleus to aggregate (polymerize), which is the direct cause of the nuclear enlargement.

This result suggests that the change in cancer cell nuclear size may not simply be a "trait evolved by the cancer cell for its benefit." Rather, it suggests that it is a temporary, makeshift response to stress, and that it may impose constraints on the cancer cell's potential for metastasis.

Therefore, future research needs to explore whether changes in nuclear size can become a target for cancer treatment or a clue related to the suppression of metastasis. That is, nuclear hypertrophy may be a temporary response to replication stress and should not necessarily be seen as indicating the malignancy of the cancer.

This conclusion was substantiated through: (1) Gene Function Screening (inhibiting thousands of genes sequentially to find the key genes involved in nuclear size regulation); (2) Transcriptome Analysis (confirming which gene programs are activated when the nucleus enlarges); (3) 3D Genome Structure Analysis (Hi-C), which revealed that nuclear hypertrophy is not just a size change but is connected to changes in DNA folding and gene arrangement; and (4) Mouse Xenograft Models (confirming that cancer cells with enlarged nuclei actually have reduced motility and metastatic ability).

Professor Joon Kim of the Graduate School of Medical Science and Engineering said, "We confirmed that DNA replication stress disrupts the nuclear size balance, explaining the underlying mechanism of long-standing pathological observations," adding, "The possibility of utilizing nuclear structural changes as a new indicator for cancer diagnosis and metastasis prediction has now opened up."

Dr. Changgon Kim (currently a Hematology and Oncology specialist at Korea University Anam Hospital) and Saemyeong Hong, a PhD candidate from the KAIST Graduate School of Medical Science and Engineering, participated as co-first authors in this study. The results were published online in the international journal PNAS (Proceedings of the National Academy of Sciences of the United States of America) on September 9th.

※ Paper Title: Replication stress-induced nuclear hypertrophy alters chromatin topology and impacts cancer cell fitness ※ DOI: https://doi.org/10.1073/pnas.2424709122

Meanwhile, this research was supported by the Mid-career Researcher Program and the Engineering Research Center (ERC) program of the National Research Foundation of Korea.

Attached files
Regions: Asia, South Korea, North America, United States
Keywords: Health, Medical, Well being, Applied science, Engineering, Science, Life Sciences

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement