Visualisation of blood flow sharpens artificial heart
en-GBde-DEes-ESfr-FR

Visualisation of blood flow sharpens artificial heart


Using magnetic cameras, researchers at Linköping University have examined blood flow in an artificial heart in real time. The results make it possible to design the heart in a way to reduce the risk of blood clots and red blood cells breakdown, a common problem in today’s artificial hearts. The study, published in Scientific Reports, was done in collaboration with the company Scandinavian Real Heart AB, which is developing an artificial heart.

“The heart is a muscle that never rests. It can never rest. The heart can beat for a hundred years without being serviced or stopping even once. But constructing a pump that can function in the same way – that’s a challenge,” says Tino Ebbers, professor of physiology at Linköping University.

Nearly 9,000 heart transplants are performed worldwide per year, and the number keeps increasing. So does the number of people queuing for a new heart, with some 2,800 on the waiting list in the EU alone, and around 3,400 in the US.

Most of the patients whose heart does not work at all are currently connected to a machine that takes care of their blood circulation for them. It is a large device, and the patient is confined to their hospital bed. For those patients, an artificial heart could be an option while waiting for a donor heart.

“Finding a biologically compatible heart for a transplant can take a long time. In those cases, an artificial heart can enable the patient to wait at home. They may not be running around like Usain Bolt, but patients can be with their loved ones during the waiting period,” says Twan Bakker, PhD student at the Center for Medical Image Science and Visualization, CMIV, at LiU.

For this to happen, the technology needs refining. Blood clots and damaged red blood cells are common problems in artificial hearts with pulsating function. This is often due to areas of high and low blood speed being close to each other, or areas where the blood is stationary in the heart. High speed and turbulence can lead to the destruction of red blood cells, i.e. hemolysis, whereas low speed increases the risk of blood clots.

Minimising the risk of complications requires an in-depth understanding of how blood flows in the artificial heart. Researchers at LiU, in collaboration with the company Scandinavian Real Heart, have therefore used magnetic resonance imaging, often abbreviated as MRI, for real-time observation of the blood flow in a pulsating artificial heart. The results were then compared with the blood flow in a real heart.

“The cool thing about this technology is that it’s possible to look inside a patient, or in this case an artificial heart, without physically opening and checking – this is completely unique,” says Tino Ebbers.

What the researchers could see in the MRI images was that the blood flow in the artificial heart resembled that of a truly healthy heart. Proof that the heart is well-designed.

Scandinavian Real Heart’s artificial heart was recently granted the designation Humanitarian Use Device (HUD) by the US Food and Drug Administration (FDA). The HUD designation makes it possible to apply for Humanitarian Device Exemption (HDE), an accelerated regulatory framework that may grant the product limited marketing rights. According to the researchers, clinical use is still a couple of years away, as pre-clinical and clinical studies first need to be completed.

“Our dream is to develop an artificial heart as a permanent solution. We’re not there yet, as we’re required to first show that it functions as a bridge to transplantation so as to prevent the patient from dying while waiting for a heart. But our ultimate goal is fantastic, and when we reach it, there will be no need for donor hearts,” says Twan Bakker.

The research was partly funded by Scandinavian Real Heart AB, where co-authors Azad Najar, Thomas Finocchiaro and Ina Laura Perkins are employees and/or shareholders. The other participants declare no conflict of interest.
4D flow MRI enhances prototype testing of a total artificial heart, Twan Bakker, Azad Najar, Thomas Finocchiaro, Ina Laura Perkins, Jonas Lantz, Tino Ebbers, Scientific reports 2025. Published online 15 September 2025. DOI: 10.1038/s41598-025-18422-y
Attached files
  • Twan Bakker, PhD student at Linköping University.Credit: Emma Busk WinquistUsage: The contents may be downloaded, used and shared in media channels by, for example, journalists, bloggers, writers, pundits, etc., for purposes of communication, description and commenting on your press release, post or information, on the condition that the contents are used unchanged and in their entirety. The creator must be specified to the extent and in the manner required by good publishing practice (which means, among other things, that the photographer of any photographs must nearly always be specified).
  • To be able to observe the blood flow in the artificial heart in an MRI in real time, the researchers had to build a full-scale model of the human circulatory system.Credit: Emma Busk WinquistUsage: The contents may be downloaded, used and shared in media channels by, for example, journalists, bloggers, writers, pundits, etc., for purposes of communication, description and commenting on your press release, post or information, on the condition that the contents are used unchanged and in their entirety. The creator must be specified to the extent and in the manner required by good publishing practice (which means, among other things, that the photographer of any photographs must nearly always be specified).
  • Tino Ebbers, professor at Linköping UniversityCredit: Emma Busk WinquistUsage: The contents may be downloaded, used and shared in media channels by, for example, journalists, bloggers, writers, pundits, etc., for purposes of communication, description and commenting on your press release, post or information, on the condition that the contents are used unchanged and in their entirety. The creator must be specified to the extent and in the manner required by good publishing practice (which means, among other things, that the photographer of any photographs must nearly always be specified).
Regions: Europe, Sweden
Keywords: Health, Medical, Applied science, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement