World's First Quantum Computing for Lego-like Design of Porous Materials​
en-GBde-DEes-ESfr-FR

World's First Quantum Computing for Lego-like Design of Porous Materials​


Multivariate Porous Materials (MTV) are like a 'collection of Lego blocks,' allowing for customized design at a molecular level to freely create desired structures. Using these materials enables a wide range of applications, including energy storage and conversion, which can significantly contribute to solving environmental problems and advancing next-generation energy technologies. Our research team has, for the first time in the world, introduced quantum computing to solve the difficult problem of designing complex MTVs, opening an innovative path for the development of next-generation catalysts, separation membranes, and energy storage materials.

On September 9, Professor Jihan Kim's research team at our university's Department of Chemical and Biomolecular Engineering announced the development of a new framework that uses a quantum computer to efficiently explore the design space of millions of multivariate porous materials (hereafter, MTV).

MTV porous materials are structures formed by the combination of two or more organic ligands (linkers) and building block materials like metal clusters. They have great potential for use in the energy and environmental fields. Their diverse compositional combinations llow for the design and synthesis of new structures. Examples include gas adsorption, mixed gas separation, sensors, and catalysts.

However, as the number of components increases, the number of possible combinations grows exponentially. It has been impossible to design and predict the properties of complex MTV structures using the conventional method of checking every single structure with a classical computer.

The research team represented the complex porous structure as a 'network (graph) drawn on a map' and then converted each connection point and block type into qubits that a quantum computer can handle. They then asked the quantum computer to solve the problem: "Which blocks should be arranged at what ratio to create the most stable structure?"

Because quantum computers can calculate multiple possibilities simultaneously, it's like spreading out millions of Lego houses at once and quickly picking out the sturdiest one. This allows them to explore a vast number of possibilities—which a classical computer would have to calculate one by one—with far fewer resources.

The research team also conducted experiments on four different MTV structures that have been previously reported. The results from the simulation and the IBM quantum computer were identical, demonstrating that the method "actually works well."

In the future, the team plans to combine this method with machine learning to expand it into a platform that considers not only simple structural design but also synthesis feasibility, gas adsorption performance, and electrochemical properties simultaneously.

Professor Jihan Kim said, "This research is the first case to solve the bottleneck of complex multivariate porous material design using quantum computing." He added, "This achievement is expected to be widely applied as a customized material design technology in fields where precise composition is key, such as carbon capture and separation, selective catalytic reactions, and ion-conducting electrolytes, and it can be flexibly expanded to even more complex systems in the future."

Ph.D. candidates Sinyoung Kang and Younghoon Kim of the Department of Chemical and Biomolecular Engineering participated as co-first authors in this study. The research results were published in the online edition of the international journal ACS Central Science on August 22.

Meanwhile, this research was supported by the Ministry of Science and ICT's Mid-Career Researcher Support Program and the Heterogeneous Material Support Program.

Paper Title: Quantum Computing Based Design of Multivariate Porous Materials

DOI: https://doi.org/10.1021/acscentsci.5c00918
Attached files
Regions: Asia, South Korea
Keywords: Applied science, Computing, Engineering, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement