Making Truly Smart AI Agents a Reality with the World's Best DB Integration Technology​
en-GBde-DEes-ESfr-FR

Making Truly Smart AI Agents a Reality with the World's Best DB Integration Technology​


For a long time, companies have been using relational databases (DB) to manage data. However, with the increasing use of large AI models, integration with graph databases is now required. This process, however, reveals limitations such as cost burden, data inconsistency, and the difficulty of processing complex queries.

Our research team has succeeded in developing a next-generation graph-relational DB system that can solve these problems at once, and it is expected to be applied to industrial sites immediately. When this technology is applied, AI will be able to reason about complex relationships in real time, going beyond simple searches, making it possible to implement a smarter AI service.

The research team led by Professor Min-Soo Kim announced on the 8th of September that the team has developed a new DB system named 'Chimera' that fully integrates relational DB and graph DB to efficiently execute graph-relational queries. Chimera has proven its world-class performance by processing queries at least 4 times and up to 280 times faster than existing systems in international performance standard benchmarks.

Unlike existing relational DBs, graph DBs have a structure that represents data as vertices (nodes) and edges (connections), which gives them a strong advantage in analyzing and reasoning about complexly intertwined information like people, events, places, and time. Thanks to this feature, its use is rapidly spreading in various fields such as AI agents, SNS, finance, and e-commerce.

With the growing demand for complex query processing between relational DBs and graph DBs, a new standard language, 'SQL/PGQ,' which extends relational query language (SQL) with graph query functions, has also been proposed.

SQL/PGQ is a new standard language that adds graph traversal capabilities to the existing database language (SQL) and is designed to query both table-like data and connected information such as people, events, and places at once. Using this, complex relationships such as 'which company does my friend's friend work for?' can be searched much more simply than before.

The problem is that existing approaches have relied on either trying to mimic graph traversal with join operations or processing by pre-building a graph view in memory. In the former case, performance drops sharply as the traversal depth increases, and in the latter case, execution fails due to insufficient memory even if the data size increases slightly. Furthermore, changes to the original data are not immediately reflected in the view, resulting in poor data freshness and the inefficiency of having to combine relational and graph results separately.

KAIST research team's 'Chimera' fundamentally solves these limitations. The research team redesigned both the storage layer and the query processing layer of the database.

First, the research team introduced a 'dual-store structure' that operates a graph-specific storage and a relational data storage together. They then applied a 'traversal-join operator' that processes graph traversal and relational operations simultaneously, allowing complex operations to be executed efficiently in a single system. Thanks to this, Chimera has established itself as the world's first graph-relational DB system that integrates the entire process from data storage to query processing into one.

As a result, it recorded world-class performance on the international performance standard benchmark 'LDBC Social Network Benchmark (SNB),' being at least 4 times and up to 280 times faster than existing systems.

Query failure due to insufficient memory does not occur no matter how large the graph data becomes, and since it does not use views, there is no delay problem in terms of data freshness.

Professor Min-Soo Kim stated, "As the connections between data become more complex, the need for integrated technology that encompasses both graph and relational DBs is increasing. Chimera is a technology that fundamentally solves this problem, and we expect it to be widely used in various industries such as AI agents, finance, and e-commerce."

The study was co-authored by Geonho Lee, a Ph.D. student in KAIST School of Computing, as the first author, and Jeongho Park, an engineer at Professor Kim's startup GraphAI Co., Ltd., as the second author, with Professor Kim as the corresponding author.

The research results were presented on September 1st at VLDB, a world-renowned international academic conference in the field of databases. In particular, the newly developed Chimera technology is expected to have an immediate industrial impact as a core technology for implementing 'high-performance AI agents based on RAG (a smart AI assistant with search capabilities),' which will be applied to 'AkasicDB,' a vector-graph-relational DB system scheduled to be released by GraphAI Co., Ltd.

*Paper title: Chimera: A System Design of Dual Storage and Traversal-Join Unified Query Processing for SQL/PGQ *DOI: https://dl.acm.org/doi/10.14778/3705829.3705845

This research was supported by the Ministry of Science and ICT's IITP SW Star Lab and the National Research Foundation of Korea's Mid-Career Researcher Program.

Attached files
Regions: Asia, South Korea
Keywords: Applied science, Artificial Intelligence, Computing, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement