KAIST Develops AI that Automatically Detects Defects in Smart Factory Manufacturing Processes Even When Conditions Change​
en-GBde-DEes-ESfr-FR

KAIST Develops AI that Automatically Detects Defects in Smart Factory Manufacturing Processes Even When Conditions Change​


Recently, defect detection systems using artificial intelligence (AI) sensor data have been installed in smart factory manufacturing sites. However, when the manufacturing process changes due to machine replacement or variations in temperature, pressure, or speed, existing AI models fail to properly understand the new situation and their performance drops sharply. KAIST researchers have developed AI technology that can accurately detect defects even in such situations without retraining, achieving performance improvements up to 9.42%. This achievement is expected to contribute to reducing AI operating costs and expanding applicability in various fields such as smart factories, healthcare devices, and smart cities.

KAIST (President Kwang Hyung Lee) announced on the 26th of August that a research team led by Professor Jae-Gil Lee from the School of Computing has developed a new “time-series domain adaptation” technology that allows existing AI models to be utilized without additional defect labeling, even when manufacturing processes or equipment change.

Time-series domain adaptation technology enables AI models that handle time-varying data (e.g., temperature changes, machine vibrations, power usage, sensor signals) to maintain stable performance without additional training, even when the training environment (domain) and the actual application environment differ.

Professor Lee’s team paid attention to the fact that the core problem of AI models becoming confused by environmental (domain) changes lies not only in differences in data distribution but also in changes in defect occurrence patterns (label distribution) themselves. For example, in semiconductor wafer processes, the ratio of ring-shaped defects and scratch defects may change due to equipment modifications.

The research team developed a method for decomposing new process sensor data into three components—trends, non-trends, and frequencies—to analyze their characteristics individually. Just as humans detect anomalies by combining pitch, vibration patterns, and periodic changes in machine sounds, AI was enabled to analyze data from multiple perspectives.

In other words, the team developed TA4LS (Time-series domain Adaptation for mitigating Label Shifts) technology, which applies a method of automatically correcting predictions by comparing the results predicted by the existing model with the clustering information of the new process data. Through this, predictions biased toward the defect occurrence patterns of the existing process can be precisely adjusted to match the new process.

In particular, this technology is highly practical because it can be easily combined like an additional plug-in module inserted into existing AI systems without requiring separate complex development. That is, regardless of the AI technology currently being used, it can be applied immediately with only simple additional procedures.

In experiments using four benchmark datasets of time-series domain adaptation (i.e., four types of sensor data in which changes had occurred), the research team achieved up to 9.42% improvement in accuracy compared to existing methods.[TT1]

Especially when process changes caused large differences in label distribution (e.g., defect occurrence patterns), the AI demonstrated remarkable performance improvement by autonomously correcting and distinguishing such differences. These results proved that the technology can be used more effectively without defects in environments that produce small batches of various products, one of the main advantages of smart factories.

Professor Jae-Gil Lee, who supervised the research, said, “This technology solves the retraining problem, which has been the biggest obstacle to the introduction of artificial intelligence in manufacturing. Once commercialized, it will greatly contribute to the spread of smart factories by reducing maintenance costs and improving defect detection rates.”

This research was carried out with Jihye Na, a Ph.D. student at KAIST, as the first author, with Youngeun Nam, a Ph.D. student, and Junhyeok Kang, a researcher at LG AI Research, as co-authors. The research results were presented in August 2025 at KDD (the ACM SIGKDD Conference on Knowledge Discovery and Data Mining), the world’s top academic conference in artificial intelligence and data.
※Paper Title: “Mitigating Source Label Dependency in Time-Series Domain Adaptation under Label Shifts”
※DOI: https://doi.org/10.1145/3711896.3737050

This technology was developed as part of the research outcome of the SW Computing Industry Original Technology Development Program’s SW StarLab project (RS-2020-II200862, DB4DL: Development of Highly Available and High-Performance Distributed In-Memory DBMS for Deep Learning), supported by the Ministry of Science and ICT and the Institute for Information & Communications Technology Planning & Evaluation (IITP).

Attached files
Regions: Asia, South Korea, North America, United States
Keywords: Applied science, Artificial Intelligence, Engineering, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement