Unlocking the role of Lcn2 in COVID-19 lung damage
en-GBde-DEes-ESfr-FR

Unlocking the role of Lcn2 in COVID-19 lung damage

30/06/2025 TranSpread

Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), understanding the mechanisms underlying severe pneumonia has remained a major research challenge. Although mouse models exist, most mimic only mild to moderate disease, limiting the ability to study life-threatening respiratory outcomes. Emerging data show that immune overactivation, especially through macrophage-driven inflammation, plays a decisive role in worsening COVID-19. Among many inflammatory mediators, lipocalin 2 (Lcn2) has been increasingly associated with respiratory disease severity, yet its regulatory mechanisms and pathological consequences are not well defined. Based on these challenges, there is a pressing need to investigate the upstream pathways and downstream effects of Lcn2 in virus-induced lung inflammation.

In a letter-style study (DOI: 10.1093/procel/pwae045) published on August 24, 2024, in Protein & Cell, researchers from the Institute of Laboratory Animal Science, CAMS & PUMC, etc., reported that macrophage-secreted Lcn2 significantly worsens SARS-CoV-2-induced pneumonia in mice. By adapting the Beta variant to wild-type BALB/c mice, the team established a model of severe pneumonia, enabling detailed investigation into immune responses. The researchers identified Lcn2 as a key proinflammatory mediator activated through the NLRP3 signaling pathway, linking it directly to alveolar injury and systemic inflammation in viral lung infections.

To create a more accurate model of severe COVID-19 pneumonia, the researchers developed a mouse-adapted SARS-CoV-2 strain (P7) that induced intense lung pathology and high mortality. P7-infected mice exhibited elevated levels of inflammatory cytokines and profound lung tissue damage. Transcriptomic and proteomic analyses revealed that Lcn2 expression was markedly upregulated following P7 infection. Further studies showed that macrophages were the main source of Lcn2, and that its production was driven by the NLRP3 signaling pathway. Inhibiting NLRP3 significantly reduced Lcn2 levels, confirming the pathway's central regulatory role. Functionally, Lcn2 was shown to amplify pulmonary inflammation by stimulating endothelial cells to express adhesion molecules (e.g., VCAM1), increasing neutrophil adhesion to endothelial cells, and weakening intercellular junctions. This resulted in compromised vascular integrity and greater immune cell infiltration. The team also discovered that a specific W682R mutation near the furin cleavage site in the viral spike protein may contribute to the enhanced infectivity and inflammation observed in the P7 strain. These findings provide crucial mechanistic insights into how viral evolution and host immune responses interact to produce severe lung pathology.

This study identifies Lcn2 as a key inflammatory mediator that drives severe lung damage during viral infection, said Dr. Linlin Bao, corresponding author of the study. By establishing a wild-type mouse model that closely mimics severe pneumonia, the researchers were able to uncover how the NLRP3-Lcn2 axis contributes to the pathogenesis. This opens new doors for understanding disease mechanisms and for targeting inflammation at its source, potentially leading to novel treatment strategies for severe COVID-19 and related respiratory diseases.

The discovery of Lcn2's central role in promoting severe pneumonia has broad implications. It positions Lcn2 not only as a biomarker for early detection of disease severity but also as a candidate for therapeutic intervention. Targeting the NLRP3-Lcn2 axis may offer a new strategy to mitigate lung injury in severe respiratory infections. Moreover, the established mouse model provides a valuable tool for testing antiviral and anti-inflammatory treatments. As new SARS-CoV-2 variants continue to emerge, understanding host-pathogen interactions like these will be critical for preparing for future public health threats.

###

References

DOI

10.1093/procel/pwae045

Original Source URL

https://doi.org/10.1093/procel/pwae045

Funding information

This work was supported by the National Research and Development Project of China (grant no. 2023YFF0724800), the CAMS Initiative for Innovative Medicine of China (grant no. 2021-I2M-1-035), the Sector Fund (2060302), and Young Elite Scientists Sponsorship Program by CAST (YESS) (grant no: 2020QNRC001).

About Protein & Cell

Protein & Cell is a fully open access, peer-reviewed journal that publishes research concerning the latest developments in multidisciplinary areas in biology and biomedicine, with an emphasis on protein and cell research. Subject areas include biochemistry, biophysics, cell biology, developmental biology, genetics, immunology, microbiology, molecular biology, neuroscience, oncology, protein science, structural biology and translational medicine. In addition, Protein & Cell addresses research highlights, news and views, and commentaries covering research policies and funding trends in China, and provides a forum to foster academic exchange among researchers across different fields of the life sciences.

Paper title: Lcn2 secreted by macrophages through NLRP3 signaling pathway induced severe pneumonia
Attached files
  • P7 stain infection significantly augmented the secretion of Lcn2 in macrophages. After infecting BALB/c mice with the P0 strain and P7 strain, the lung was collected at 3, 5, and 7 dpi for RNA-Seq analysis, Western blot, ELISA, and multiplex IHC staining.
30/06/2025 TranSpread
Regions: North America, United States, Asia, China
Keywords: Health, Covid-19

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement