In the Trace Lies the Truth: Halogens and the Fate of the Lunar Crust
en-GBde-DEes-ESfr-FR

In the Trace Lies the Truth: Halogens and the Fate of the Lunar Crust

23/06/2025 Ehime University

On a clear night, the Moon you gaze upon looks the same as it looked for the first humans that walked the Earth --- the same black-and-white side of our nearest neighbor by large dark ‘seas’ and white ‘highlands’ has been facing us for billions of years. The Moon is thought to have been born in a giant impact between our Earth and a Mars-sized other planet, Theia, ca. 4.5 billion years ago. The energy associated with this impact is expected to have led to an ocean of magma covering both the Earth and the young Moon. Cooling of this magma is expected to result in a nearly homogeneous solid Moon, covered with the same crust everywhere. This is not always the case. The hemisphere always facing us, called the lunar nearside, has a totally different appearance than its opposite half, the farside, which is dominated by bright, highland-dominated landscapes, with virtually no ‘seas’ (Fig.1).
The dark lunar ‘seas’ or maria in Latin, are composed of widespread basaltic magmas, mostly erupted ca. 3.5 billion years ago on the nearside, with very few eruption on the far side. This marks a distinct evolution history for these two hemispheres. Why and how did this happened? The secret that shaped the Moon into two worlds may well be buried within minute amounts of halogens (e.g., fluorine and chlorine), found in lunar samples.
Halogen abundances in lunar minerals provide unique insight into the Moon’s evolution, but incomplete knowledge of halogen incorporation in minerals and melts has limited their application. Researchers at the Geodynamics Research Center, Ehime University collaborating with colleagues from Universität Münster (Germany) and Vrije Universiteit Amsterdam (the Netherlands), carried out high-pressure, high-temperature experiments and successfully derived unique new data on how chlorine (Cl) distributes itself between lunar minerals and co-existing magma. They coupled models of the evolution of the lunar interior to measured halogen abundances in lunar crust samples and found that most lunar nearside samples turn out to be anomalously rich in Cl. In contrast, crustal materials from the lunar farside do not show this Cl enrichment. The researchers provide evidence to link this enrichment to the incorporation of gaseous Cl-compounds by lunar nearside rocks.
This finding indicates that the existence of widespread chloride vapor (with Cl likely present as metal chlorides) was possibly limited to the lunar nearside, suggesting the metal chloride vapor appears to be tied to lunar dichotomy. Considering Cl is highly incompatible and volatile, this vapor-phase metasomatism may be related to (impact-induced/eruption) degassing from extensive lunar mare basalts in the nearside Procellarum KREEP Terrane. Crustal rocks in the lunar farside, without Cl enrichment, are shown to be products from magma derived from lunar interior ca. 4.3 billion years ago. Based on F/Cl modeling, the researchers found that a particular type of lunar crustal rock called the Mg-suite likely originate from a deep mantle which preserves remnants of the initial lunar magma ocean that was present 4.5 billion years ago.
Chlorine-rich vapors released during eruptions (or impact-induced evaporation) played a key role in transforming the Moon’s nearside that human can see. Meanwhile, the farside crust, invisible to us all, escaped from these vapor-associated volcanic activities and thus preserved more pristine information about the Moon including about the lunar magma ocean that formed right after the Moon was born. This finding illustrates the scientific value of recent lunar space missions that focused specifically on studying the lunar far side.
Halogen abundance evidence for the formation and metasomatism of the primary lunar crust.
Jing, J. J., Berndt, J., Kuwahara, H., Klemme, S., & van Westrenen, W.
(2025). Nature Communications (10.1038/s41467-025-60849-4).
Attached files
  • 【Early Moon and its two faces】Around 4.5 billion years ago, the Moon was covered by a global magma ocean. The solidification of the Moon is expected to produce a plagioclase-rich crust. This only appears in the farside of the Moon, whereas the nearside Moon is largely covered by dark erupted basalts. ©Jiejun Jing, Ehime University
23/06/2025 Ehime University
Regions: Asia, Japan, Europe, Germany, Netherlands, Extraterrestrial, Moon
Keywords: Science, Earth Sciences, Space Science

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement