Magically reducing errors in quantum computers
en-GBde-DEes-ESfr-FR

Magically reducing errors in quantum computers


Researchers from The University of Osaka invent a technique to dramatically decrease overhead of quantum computers

Osaka, Japan – For decades, quantum computers that perform calculations millions of times faster than conventional computers have remained a tantalizing yet distant goal. However, a new breakthrough in quantum physics may have just sped up the timeline.

In an article published in PRX Quantum, researchers from the Graduate School of Engineering Science and the Center for Quantum Information and Quantum Biology at The University of Osaka devised a method that can be used to prepare high-fidelity “magic states” for use in quantum computers with dramatically less overhead and unprecedented accuracy.

Quantum computers harness the fantastic properties of quantum mechanics such as entanglement and superposition to perform calculations much more efficiently than classical computers can. Such machines could catalyze innovations in fields as diverse as engineering, finance, and biotechnology. But before this can happen, there is a significant obstacle that must be overcome.

“Quantum systems have always been extremely susceptible to noise,” says lead researcher Tomohiro Itogawa. “Even the slightest perturbation in temperature or a single wayward photon from an external source can easily ruin a quantum computer setup, making it useless. Noise is absolutely the number one enemy of quantum computers.”

Thus, scientists have become very interested in building so-called fault-tolerant quantum computers, which are robust enough to continue computing accurately even when subject to noise. Magic state distillation, in which a single high-fidelity quantum state is prepared from many noisy ones, is a popular method for creating such systems. But there is a catch.

“The distillation of magic states is traditionally a very computationally expensive process because it requires many qubits,” explains Keisuke Fujii, senior author. “We wanted to explore if there was any way of expediting the preparation of the high-fidelity states necessary for quantum computation.”

Following this line of inquiry, the team was inspired to create a “level-zero” version of magic state distillation, in which a fault-tolerant circuit is developed at the physical qubit or “zeroth” level as opposed to higher, more abstract levels. In addition to requiring far fewer qubits, this new method led to a roughly several dozen times decrease in spatial and temporal overhead compared with that of the traditional version in numerical simulations.

Itogawa and Fujii are optimistic that the era of quantum computing is not as far off as we imagine. Whether one calls it magic or physics, this technique certainly marks an important step toward the development of larger-scale quantum computers that can withstand noise.
###
The article, “Efficient Magic State Distillation by Zero-Level Distillation,” was published in PRX Quantum at DOI: https://doi.org/10.1103/thxx-njr6.
Title: Efficient Magic State Distillation by Zero-Level Distillation
Journal: Physical Review X Quantum
Authors: Tomohiro Itogawa, Yugo Takada, Yutaka Hirano and Keisuke Fujii
DOI: 10.1103/thxx-njr6
Funded by:
Ministry of Education, Culture, Sports, Science and Technology
Japan Science and Technology Agency
Attached files
  • Fig. 1 Comparison of zero-level distillation (right) and logical-level distillation (left)., Original content, Credit must be given to the creator., QIQB Quantum Computing Team, The University of Osaka
  • Fig. 2 Detail of zero-level distillation, Original content, Credit must be given to the creator., QIQB Quantum Computing Team, The University of Osaka
Regions: Asia, Japan
Keywords: Applied science, Computing

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement