When the sky takes a midday dip: global patterns in ionospheric bite-outs
en-GBde-DEes-ESfr-FR

When the sky takes a midday dip: global patterns in ionospheric bite-outs

05/06/2025 TranSpread

The ionosphere is a critical layer of Earth's upper atmosphere that affects radio communications and satellite navigation by reflecting and refracting electromagnetic signals. Among its many behaviors, one stands out for its peculiarity: a sudden midday dip in electron content. These noontime bite-outs, first observed decades ago, can disrupt signals and complicate space weather forecasting. While regional studies have documented the occurrence of bite-outs, their global distribution and causes remain unclear. Due to these uncertainties, there is a growing need to explore their full spatiotemporal characteristics using global, high-resolution datasets.

A research team from Hohai University and Beihang University has published (DOI: 10.1186/s43020-025-00164-x) the most comprehensive analysis to date of ionospheric noontime bite-outs, using five-minute resolution global ionospheric map (GIM) data. The study, released in Satellite Navigation in May 2025, compares bite-out events from 2014 and 2020—years representing solar maximum and minimum, respectively. By scanning latitudes from pole to pole, the team was able to examine how these electron density dips vary with solar activity, season, and geographic location.

The study reveals that noontime bite-outs are significantly more frequent during periods of low solar activity. In 2020, their occurrence extended to wider regions, especially in mid- and high-latitudes, compared to 2014. The team also discovered that winter months consistently show the highest occurrence rates, likely due to lower ionospheric electron content and weaker solar radiation. Using two different intensity metrics—a relative ratio and an absolute value—they showed how bite-outs manifest differently across regions. Most events peaked around 13:00 local time and lasted between 2.5 and 6 hours, with longer durations typically found in summer and during solar maximum years. The underlying causes vary by latitude: near the equator, plasma dynamics such as the fountain effect dominate, while in higher latitudes, poleward winds and neutral atmospheric processes play a larger role. This broad comparison establishes a new benchmark for understanding ionospheric dynamics on a planetary scale.

“This work marks a major advance in our ability to monitor and understand daily ionospheric fluctuations,” said Dr. Cheng Wang, senior author of the study. “For the first time, we have a global, time-resolved picture of how noontime bite-outs behave under different solar and seasonal conditions. These findings will be instrumental in future efforts to model space weather and mitigate its effects on navigation and communication systems.”

By clarifying when and where noontime bite-outs are likely to occur, the study paves the way for more resilient satellite-based systems. Communications and GNSS signals are particularly vulnerable to sudden ionospheric changes, and predictive models could benefit from this new understanding of midday dips. Moreover, the intensity metrics and global mapping approaches developed here offer tools for future studies on ionospheric variability. As solar activity continues to fluctuate, combining physical models with real-time data could unlock better forecasting tools—helping both scientists and engineers navigate the invisible landscape above.

###

References

DOI

10.1186/s43020-025-00164-x

Original Source URL

https://doi.org/10.1186/s43020-025-00164-x

Funding information

This study has been funded by the National Key R&D Program of China (No. 2022YFB3904402) and the National Natural Science Foundation of China (No. 42474037).

About Satellite Navigation

Satellite Navigation (E-ISSN: 2662-1363; ISSN: 2662-9291) is the official journal of Aerospace Information Research Institute, Chinese Academy of Sciences. The journal aims to report innovative ideas, new results or progress on the theoretical techniques and applications of satellite navigation. The journal welcomes original articles, reviews and commentaries.

Paper title: Analysis of the global spatiotemporal characteristics of ionospheric noontime bite-outs
Attached files
  • Average noontime bite-outs intensities (Ibt) in 2014 and 2020. Using Ibt as the intensity metric, (a) and (b) represent the average noontime bite-outs intensities for 2014 and 2020, respectively, in units of TECu. The color scale indicates Ibt of the noontime bite-outs, with warmer colors representing higher value. The region with a value of 0 indicate that no noontime bite-out pattern occurred in those areas during that month.
05/06/2025 TranSpread
Regions: North America, United States
Keywords: Science, Earth Sciences, Applied science, Engineering

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement