Charge once, power long: ultrasonic solution for implantable devices
en-GBde-DEes-ESfr-FR

Charge once, power long: ultrasonic solution for implantable devices

28/05/2025 TranSpread

Modern implantable medical devices (IMDs)—such as pacemakers, defibrillators, and neurostimulators—are constrained by their reliance on onboard batteries, which limit device longevity and increase the need for surgical replacements. Wireless power transfer methods, including inductive, capacitive, and electromagnetic coupling, have shown promise but are hindered by poor tissue penetration, alignment issues, and safety concerns. Ultrasound-based energy delivery has emerged as a compelling alternative due to its deep tissue reach and favorable safety profile. As the lead-based piezoelectric materials raise biocompatibility concerns for implantable devices, micromachined transducers attract greater attention for this application. However, most existing capacitive micromachined ultrasonic transducer (CMUT) systems still depend on external direct current (DC) bias, complicating their use. These challenges point to a pressing need for a self-sustaining, efficient ultrasonic power solution.

Responding to this need, engineers at North Carolina State University have developed a CMUT device that sidesteps the limitations of conventional systems. Reported (DOI: 10.1038/s41378-025-00902-w) in Microsystems & Nanoengineering on April 23, 2025, their CMUT design integrates a built-in charge storage capacitor and functions without the need for continuous external bias. Once pre-charged before implantation, the device retains its charge for years. In testing, it delivered a maximum output of 10.1 mW with a peak energy conversion efficiency of 29.7%, setting new records for ultrasonic wireless power in biomedical applications.

The heart of the innovation lies in the CMUT's architecture: a floating electrode sandwiched between two fixed electrodes. Prior to implantation, a DC bias and ultrasonic pressure bring the floating and bottom electrodes into contact, allowing controlled charge transfer. Once charged, the device converts incoming ultrasonic waves into electrical power without further external input. Laboratory tests confirmed strong performance, with stable operation at 2.45 MHz and no performance degradation over time. Crucially, all testing parameters remained within FDA safety limits. The design's key advantages—including vacuum encapsulation, charge-preserving insulation, and mechanical safeguards—enabled robust, leakage-free power delivery ideally suited for long-term use in IMDs.

"This technology marks a substantial step forward in the field of implantable power systems," said Dr. Ömer Oralkan, senior author of the study. "By eliminating the need for external bias and demonstrating years-long charge retention, we've made ultrasonic wireless power transfer not only more efficient but also more practical. The CMUT structure we developed is scalable, biocompatible, and can meet the power needs of diverse medical devices, from pacemakers to drug pumps."

Looking ahead, the researchers envision the development of 2D CMUT arrays to address alignment challenges and integrate with custom-designed circuits to increase power output. These advances could enable a new generation of compact, battery-free implants that operate safely and reliably for years. Beyond enhancing patient comfort and reducing surgical risk, the approach could redefine how clinicians and engineers design and power the next wave of bioelectronic devices.

###

References

DOI

10.1038/s41378-025-00902-w

Original Source URL

https://doi.org/10.1038/s41378-025-00902-w

Funding information

This work was supported by the NSF under Grant 1160483 as part of a Centre-to-Center collaborative partnership with NUI Galway, Ireland and Queen’s University, Belfast, Northern Ireland. The authors would like to thank Ali Önder Biliroğlu for his help with experimental setups. This work was performed in part at the NCSU Nanofabrication Facility (NNF), and Duke University Shared Materials Instrumentation Facility (SMIF), all of which are members of the North Carolina Research Triangle Nanotechnology Network (RTNN), which is supported by the National Science Foundation (Grant ECCS-2025064) as part of the National Nanotechnology Coordinated Infrastructure (NNCI).

About Microsystems & Nanoengineering

Microsystems & Nanoengineering is an online-only, open access international journal devoted to publishing original research results and reviews on all aspects of Micro and Nano Electro Mechanical Systems from fundamental to applied research. The journal is published by Springer Nature in partnership with the Aerospace Information Research Institute, Chinese Academy of Sciences, supported by the State Key Laboratory of Transducer Technology.

Paper title: Wireless ultrasonic power transfer using a pre-charged CMUT structure with a built-in charge storage capacitor
Attached files
  • Miniaturized Pre-Charged CMUT for Wireless Implant Powering.
28/05/2025 TranSpread
Regions: North America, United States
Keywords: Applied science, Engineering, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by AlphaGalileo Terms Of Use Privacy Statement