Active Plant Substance Reduces Pulmonary Hypertension
en-GBde-DEes-ESfr-FR

Active Plant Substance Reduces Pulmonary Hypertension


Pulmonary hypertension is a very serious disease that leads to heart failure and death in many patients. Searching for new treatment options, a team headed by Professor Daniela Wenzel and Dr. Alexander Seidinger from the Department of Systems Physiology at Ruhr University Bochum, Germany, tested the plant substance FR900359 – referred to as FR by the researchers. It differs from previously used active substances in that it targets a different point in the signaling pathway that leads to pulmonary hypertension. As a result, it simultaneously inhibits numerous factors that lead to vasoconstriction in the lungs. “In our experiments, FR relaxed the vessels quickly and effectively and produced a good therapeutic effect,” as Alexander Seidinger, first author of the study, outlines the findings. The results were published in the journal EMBO Molecular Medicine on July 8, 2024.
What causes pulmonary hypertension

The blood pressure inside the lungs is typically much lower than in the rest of the body. Pulmonary hypertension occurs when the blood vessels within the lungs contract and the smooth muscle layer surrounding these vessels thickens. The disease puts constant stress on the right heart, as it needs considerably more strength to pump the blood through the lungs. As a result, the heart becomes enlarged and may eventually fail due to overload. “The causes of pulmonary hypertension are often obscure,” points out Alexander Seidinger.

As part of his doctoral thesis, he focused on finding new treatment options for this serious disease. Current drugs are based on blocking individual receptors or signaling pathways that transmit the signal to constrict the pulmonary vessels. “However, there are many of these so-called vasoconstrictors,” says Alexander Seidinger. “And each one has its own receptor. A single blockade is therefore not very effective.”

Gq proteins make a promising target

The researchers chose a different approach: Rather than targeting the signal transmitter, it intervenes at a later stage in signal transmission. “Within the cells, there are only a few pathways through which the signal for vasoconstriction is passed on,” explains Seidinger. “So-called Gq proteins are involved in many of these pathways. This makes them a good target for intervention.”

Previous studies had shown that the substance FR from the plant Ardisia crenata, which is a common houseplant, has an effect on Gq proteins. The researchers therefore hoped to use FR to inhibit many different vasoconstrictors equally. They first tested the substance on isolated pulmonary vessels from mice and demonstrated its effectiveness. “FR quickly resulted in significant vascular relaxation,” points out Alexander Seidinger. Subsequent tests on tissue from pigs and human samples confirmed this effect. In experiments on mice suffering from pulmonary hypertension, the researchers eventually showed that treatment with FR alleviated the symptoms and greatly improved the animals’ state of health. “The thickness of the muscle layer around the pulmonary vessels decreased – or didn’t even increase in the first place,” says Seidinger.

The researchers only observed minor side effects: The blood pressure dropped slightly throughout the body. In fact, this could be beneficial in the treatment of pulmonary hypertension. “FR could therefore be a promising drug candidate for the treatment of the disease,” concludes Alexander Seidinger. “However, it will certainly take many years of intensive research before it can be used in clinical practice.”

Cooperation partners

In addition to the researchers from Systems Physiology at Ruhr University Bochum, researchers from the Pharmacology Research Group, University Hospital of Nottingham, UK, Massachusetts General Hospital and Harvard Medical School, Boston, USA, the University of Bonn and the University Hospital of Ruhr University Bochum in Bad Oeynhausen collaborated on the study.

Funding

The study was funded by the German Research Foundation (FOR 2372, project no. 288402524, INST 213/973-1) and the InnovationsFoRUM at Ruhr University Bochum (IF-017-22).

Alexander Seidinger, Richard Roberts, Yan Bai, Marion Müller, Eva Pfeil, Michaela Matthey, Sarah Rieck, Judith Alenfelder, Gabriele M König, Alexander Pfeifer, Evi Kostenis, Anna Klinke, Bernd K Fleischmann, Daniela Wenzel: Pharmacological Gq Inhibition Induces Strong Pulmonary Vasorelaxation and Reverses Pulmonary Hypertension, in: EMBO Molecular Medicine, 2024, DOI: 10.1038/s44321-024-00096-0, https://www.embopress.org/doi/full/10.1038/s44321-024-00096-0
Attached files
  • Daniela Wenzel, Michaela Matthey and Alexander Seidinger (from left) tested the effect of the substance FR on pulmonary hypertension.© RUB, MarquardThe image may only be used in the context of the press release "Active Plant Substance Reduces Pulmonary Hypertension" published by RUB on July, 8, 2024.
  • The active ingredient is extracted from the plant Ardisia crenata, which many people know as a houseplant.© Alexander Seidinger The image may only be used in the context of the press release "Active Plant Substance Reduces Pulmonary Hypertension" published by RUB on July, 8, 2024.
Regions: Europe, Germany, United Kingdom, North America, United States
Keywords: Health, Medical

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement