Pineapple mint's genetic blueprint: a comprehensive genome assembly
en-GBde-DEes-ESfr-FR

Pineapple mint's genetic blueprint: a comprehensive genome assembly

23/05/2024 TranSpread

Mentha suaveolens, commonly known as pineapple mint, is valued for its distinct aroma and medicinal properties, which are attributed to its essential oils. Despite its importance, understanding the genetic basis of these traits has been challenging due to the complexity of the Mentha genome, characterized by high heterozygosity and numerous structural variations. A comprehensive study of the Mentha genome was essential to uncover the genetic factors influencing its unique characteristics.

Researchers from the Chengdu University of Traditional Chinese Medicine, in collaboration with several other institutions, published a study (DOI: 10.1093/hr/uhae022) in the journal Horticulture Research on January 17, 2024. The team has successfully assembled a haplotype-resolved, gap-free genome of Mentha suaveolens, also known as pineapple mint. Utilizing advanced sequencing technologies, this study sheds light on the genetic diversity and structural variations within the genome, providing a valuable resource for future genetic and breeding research.

The study presents the first high-quality, haplotype-resolved genome assembly for Mentha suaveolens, with a genome size of 414.3 Mb and 31,251 coding genes. By integrating data from various sequencing platforms, the researchers resolved two complete haplotypic assemblies, each nearly fully annotated for telomeres and centromeres. Notably, the analysis revealed 41,135 structural variations, including deletions, insertions, duplications, and translocations, many of which impact genes involved in terpenoid biosynthesis. One significant finding is the predominance of piperitenone oxide among the volatile compounds produced by M. suaveolens, as opposed to menthol, which is more common in other Mentha species. The study identified three genes encoding isopiperitenone reductase (ISPR), a key enzyme in menthol biosynthesis, but found that their low transcription levels likely lead to the accumulation of piperitenone oxide instead.

Dr. Chi Song, one of the leading researchers, stated, "The completion of the gap-free genome for Mentha suaveolens represents a significant milestone in plant genomics. This comprehensive genetic map provides a foundation for exploring the molecular mechanisms underlying the unique properties of pineapple mint, which could lead to innovative applications in medicine and agriculture."

The gap-free genome assembly of Mentha suaveolens paves the way for genetic research and breeding to enhance its medicinal and aromatic qualities. Understanding the genetic basis of terpenoid biosynthesis enables targeted strategies to optimize valuable compounds like piperitenone oxide. This research advances plant genomics and has significant potential to improve the cultivation and commercial value of Mentha species.

###

References

DOI

10.1093/hr/uhae022

Original Source URL

https://doi.org/10.1093/hr/uhae022

Funding information

This work was supported by introduces the talented person scientific research start funds subsidization project of Chengdu University of Traditional Chinese Medicine (030040015, 030040017) and Hubei science and technology planning project (2020BCB038).

About Horticulture Research

Horticulture Research is an open access journal of Nanjing Agricultural University and ranked number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. The journal is committed to publishing original research articles, reviews, perspectives, comments, correspondence articles and letters to the editor related to all major horticultural plants and disciplines, including biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.

Paper title: A haplotype-resolved gap-free genome assembly provides novel insight into monoterpenoid diversification in Mentha suaveolens ‘Variegata’
Attached files
  • Overview of the genomic features of M. suaveolens. a Image of M. suaveolens. b Circos plot of M. suaveolens haplotype-resolved gap-free genomic features. I: Chromosome length. II: LTR/Copia coverage. III: LTR/Gypsy elements. IV: Gene density. V: Repeat sequence density. VI: GC content. The innermost part of the plot represents the collinear relationship between the M. suaveolens haplotype-resolved genomes. c Location of the predicted centromere region and identified telomere sequences in M. suaveolens. Abbreviations: GC, guanine-cytosine; LTR, long terminal repeat; Mlon, Mentha longifolia; Msua, Mentha suaveolens.
23/05/2024 TranSpread
Regions: North America, United States, Asia, China
Keywords: Science, Agriculture & fishing

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement