Würzburg Researchers Discover New Function of Oncoproteins
en-GBde-DEes-ESfr-FR

Würzburg Researchers Discover New Function of Oncoproteins


Researchers at the University of Würzburg have discovered a new function of the oncoprotein MYCN: It not only helps cancer cells to grow stronger, but also makes them more resistant to drugs.

Oncoproteins are actually vital to human survival: thousands of them in our bodies ensure that cells grow and divide. They help heal wounds, repair genetic damage and boost our immune systems. But when oncoproteins stop working properly, things can get dangerous – they cause uncontrolled cell growth and tumours. The oncoprotein MYCN, for example, is the cause of many aggressive cancers and tumours that affect children in particular.

“MYCN proteins regulate the production of messenger RNA (mRNA) in the cell nucleus and thus the production of proteins that promote cell growth”, explains Martin Eilers, head of the Department of Biochemistry and Molecular Biology at the University of Würzburg (JMU), Germany. “If this process gets out of control, it can lead to excessive growth, the development of mutations and ultimately cancer.”

Second, Previously Unknown Function Identified

Together with his team, Eilers has now discovered a second function of MYCN in addition to the regulation of mRNA production: similar to a danger sensor, MYCN can warn a cancer cell if there are problems with the maturation of mRNA. This then triggers the cell's internal self-protection mechanisms, such as the activation of cell repair or the production of protective molecules. “MYCN is therefore not only responsible for the rapid growth of a cancer cell, but also makes it more resistant to external stressors – for example, to the drugs we want to use to cure the cancer”, says the biochemist.

Here is how it works: Unlike previously known, MYCN proteins also bind directly to mRNA and exist in the cell in either DNA- or mRNA-bound form. If the maturation of the mRNA is disturbed, they switch from the DNA-bound to the mRNA-bound form. This switch then triggers cell protection.

“This finding challenges a model that has existed for decades for one of the most important groups of oncogenes”, says Dimitrios Papadopoulos, a postdoctoral researcher in Eilers' team. “Mechanistically, it explains many biochemical properties of MYCN that were not previously understood. For example, they explain the role of subsections of the MYCN protein that were known to be important for MYCN function, but not why.”

Basis for the Development of New Drugs

In several national and international collaborations, Eiler's research group is working on the development of drugs that can target MYCN by inducing the degradation of these proteins in cancer cells. Researchers from the Massachusetts Institute of Technology (MIT) and the Institute of Molecular Biology in Mainz are involved. “In the search for these drugs, known as PROTACs, it is crucial to know exactly how MYCN works and to understand which partners the protein interacts with”, explains Papadopoulos. “PROTAC stands for ´proteolysis targeting chimera´ and refers to novel drugs that can specifically induce the degradation of oncoproteins. The next step will be to develop targeted drugs that attack MYCN mRNA complexes – we also want to understand the exact function of these compounds.”

The research was funded by the European Research Council and German Cancer Aid.
D. Papadopoulos, S. A. Ha, D. Fleischhauer, L. Uhl, T. J. Russell, I. Mikicic, K. Schneider, A. Brem, O. R. Valanju, G. Cossa, P. Gallant, C. Schuelein-Voelk, H. M. Maric, P. Beli, G. Buchel, S. M. Vos, and M. Eilers. 2024. ´The MYCN oncoprotein is an RNA-binding accessory factor of the nuclear exosome targeting complex´, Mol Cell. DOI: 10.1016/j.molcel.2024.04.007
Attached files
  • The model shows the two different states of MYCN: DNA-bound and RNA-bound, and the influence on the synthesis of new RNA molecules (Leonie Uhl/JMU).
Regions: Europe, Germany
Keywords: Science, Chemistry

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by AlphaGalileo Terms Of Use Privacy Statement