Alphagalileo > Item Display
en-GBde-DEes-ESfr-FR

Exotic magnetic states in miniature dimensions

14/10/2021 Empa

We are all used to the idea that simpler units in nature interact to form complex structures. Take, for example, the hierarchy of life, where atoms combine to form molecules, molecules combine to form cells, cells combine to form tissues, and so on, ultimately leading to the formation of complex organisms such as humans. In the quantum world, however, this process may play in reverse, where interactions between two complex objects lead to the emergence of simpler species.

Quantum magic: sawing quantum magnets in half

All elementary particles have a ‘spin’, a fundamental property that governs their interaction with magnetic fields. Spins are quantized, which means they can only assume discrete values. Electrons have the smallest possible spin that can take two discrete values, while the next simplest systems are those whose spin takes three discrete values – these are dubbed spin ½ and spin 1, respectively. In the 1980s, it was predicted that a one-dimensional chain of interacting spin 1 units should be ‘fractionalized’, such that the terminal units of the chain behave, counterintuitively, like spin ½ objects. Therefore, much like magicians who seem to saw a person in two halves and pull them apart, quantum correlations in the chain divide a spin 1 in two spin ½ entities.

One-dimensional magnetic chains assembled from molecules

Testing this prediction in a laboratory has been challenging for various reasons, chief among them being that conventional materials are not one-dimensional. While indirect evidence of spin fractionalization has been seen in crystals of organometallic chains containing transition metal ions, a direct observation of the phenomenon has remained elusive.
Now, an international team of researchers has found a remarkable route to accomplish this feat. Combining organic chemistry and ultra-high vacuum surface science, the team fabricated chains of a triangular polycyclic aromatic hydrocarbon with spin 1, known as triangulene. Using a scanning tunneling microscope the team then probed magnetic excitations of these spin chains on a gold surface. They found that beyond a certain length, the terminal triangulene units of the chains exhibited Kondo resonances – which are a characteristic spectroscopic fingerprint of spin ½ quantum objects in contact with a metal surface.

From chains to networks – and to quantum computers?

The researchers are convinced that easily and directly accessible molecular spin systems exhibiting strongly correlated behavior of electrons will become a fertile playground for developing and testing new theoretical concepts. In addition to exploring linear spin chains, the scientists are also focusing on two-dimensional networks of quantum magnets. Such spin networks are a promising material platform for quantum computation.
S Mishra, G Catarina, F Wu, R Ortiz, D Jacob, K Eimre, J Ma, CA Pignedoli, X Feng, P Ruffieux, J Fernández-Rossier, R Fasel; Observation of fractional edge excitations in nanographene spin chains; Nature (2021), DOI: 10.1038/s41586-021-03842-3

Link: https://www.nature.com/articles/s41586-021-03842-3
Attached files
  • Artistic rendering of a triangulene quantum spin chain adsorbed on a gold surface and probed with the sharp tip of a scanning tunneling microscope. While each triangulene unit has a total spin of 1, quantum correlations in the chain lead to spin fractionalization, such that the terminal triangulene units exhibit a spin of ½. Image: Empa
  • Empa researchers Shantanu Mishra, Pascal Ruffieux and Roman Fasel (from left to right) at an ultra-high vacuum facility for the preparation of triangulene spin chains. Image: Gian Vaitl / Empa
  • Left: Overview scanning tunneling micrograph of a sample containing triangulene quantum spin chains, where chains containing between two to seven triangulene units are highlighted. Right: High-resolution scanning tunneling micrograph of a ten unit-long spin chain, where the constituent triangulene units are clearly resolved. Additionally, the larger tunneling current over the terminal triangulene units that leads to their brighter appearance is due to spin-½ excitations at the chain termini. The chemical structure of triangulene is shown in the inset.Image: Empa
14/10/2021 Empa
Regions: Europe, Switzerland
Keywords: Applied science, Nanotechnology

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2021 by DNN Corp Terms Of Use Privacy Statement