en-GBde-DEes-ESfr-FR

Analysis of Coronary Angiography Video Interpolation Methods to Reduce X-ray Exposure Frequency Based on Deep Learning

16/06/2021 Compuscript Ltd

Analysis of Coronary Angiography Video Interpolation Methods to Reduce X-ray Exposure Frequency Based on Deep Learning
In a new publication from Cardiovascular Innovations and Applications; DOI https://doi.org/10.15212/CVIA.2021.0011, Xiao-lei Yin, Dong-xue Liang, Lu Wang, Jing Qiu, Zhi-yun Yang, Jian-zeng Dong and Zhao-yuan Ma from Tsinghua University, Beijing, China; Capital Medical University, Beijing, China and The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China analyse coronary angiography video interpolation methods to reduce x-ray exposure frequency based on deep learning.

Cardiac coronary angiography is a major technique that assists physicians during interventional heart surgery. Under X-ray irradiation, the physician injects a contrast agent through a catheter and determines the coronary arteries’ state in real time. However, to obtain a more accurate state of the coronary arteries, physicians need to increase the frequency and intensity of X-ray exposure, which will inevitably increase the potential for harm to both the patient and the surgeon. In the work reported here, the authors use advanced deep learning algorithms to find a method of frame interpolation for coronary angiography videos that reduces the frequency of X-ray exposure by reducing the frame rate of the coronary angiography video, thereby reducing X-ray-induced damage to physicians.
The authors established a new coronary angiography image group dataset containing 95,039 groups of images extracted from 31 videos. Each group includes three consecutive images, which are used to train the video interpolation network model and applied six popular frame interpolation methods to the dataset to confirm that the video frame interpolation technology can reduce the video frame rate and reduce exposure of physicians to X-rays.

Citation information: Analysis of Coronary Angiography Video Interpolation Methods to Reduce X-ray Exposure Frequency Based on Deep Learning, Xiao-lei Yin, Dong-xue Liang, Lu Wang, Jing Qiu, Zhi-yun Yang, Jian-zeng Dong and Zhao-yuan Ma, Cardiovasc. Innov. App., 2021, https://doi.org/10.15212/CVIA.2021.0011

Keywords: coronary angiography; video interpolation; deep learning; X-ray exposure frequency

CVIA is available on the IngentaConnect platform and at Cardiovascular Innovations and Applications. Submissions may be made using ScholarOne Manuscripts. There are no author submission or article processing fees. CVIA is indexed in the EMBASE, ESCI, OCLC, Primo Central (Ex Libris), Sherpa Romeo, NISC (National Information Services Corporation), DOAJ and Index Copernicus Databases. Follow CVIA on Twitter @CVIA_Journal; or Facebook.
Analysis of Coronary Angiography Video Interpolation Methods to Reduce X-ray Exposure Frequency Based on Deep Learning, Xiao-lei Yin, Dong-xue Liang, Lu Wang, Jing Qiu, Zhi-yun Yang, Jian-zeng Dong and Zhao-yuan Ma, Cardiovasc. Innov. App., 2021, https://doi.org/10.15212/CVIA.2021.0011
16/06/2021 Compuscript Ltd
Regions: Europe, Ireland, Asia, China
Keywords: Health, Medical

Testimonials

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2021 by DNN Corp Terms Of Use Privacy Statement