en-GBde-DEes-ESfr-FR

From milk protein, a plastic foam that gets better in a tough environment


A new high-performance plastic foam developed from whey proteins can withstand extreme heat better than many common thermoplastics made from petroleum. A research team in Sweden reports that the material, which may be used for example in catalysts for cars, fuel filters or packaging foam, actually improves its mechanical performance after days of exposure to high temperatures.

Reporting in Advanced Sustainable Systems, researchers from KTH Royal Institute of Technology in Stockholm say the research opens the door to using protein-based foam materials in potentially tough environments, such as filtration, thermal insulation and fluid absorption.

The basic building blocks of the material are protein nanofibrils, or PNFs, which are self-assembled from hydrolyzed whey proteins—a product from cheese-processing—under specific temperature and pH conditions.

In tests the foams improved with aging. After one month of exposure to a temperature of 150C, the material became stiffer, tougher and stronger, says the study’s co-author, Mikael Hedenqvist, professor in the Division of Polymeric Materials at KTH.

“This material only gets stronger with time,” he says. “If we compare with petroleum-based, commercial foam materials made of polyethylene and polystyrene, they melt instantly and decompose under the same harsh conditions.”

Proteins are often water-soluble, which poses a challenge when developing protein-based materials. Despite this, the material proved water-resistant after the aging process, which polymerized the protein, creating new covalent bonds that stabilized the foams. The foam also resisted even more aggressive substances—such as surfactants and reducing agents —that normally decompose or dissolve proteins. The crosslinking also made the foam unaffected by diesel fuel or hot oil.

The material also showed better fire resistance than commonly used polyurethane thermoset.

“This biodegradable, sustainable material can be a viable option for use in aggressive environments where fire resistance is important,” Hedenqvist says.

Potential applications include providing support for catalytic metals that operate at higher temperatures, such as platinum catalysts for automobiles.The material could conceivably work as a fuel filter, too.

Other possibilities are to use it as packaging foam and in applications for sound and thermal insulation where higher temperatures may occur and where there is a risk of an aggressive environment.

Working with Hedenqvist on the research was lead author Xinchen Ye and co-authors Antonio J. Capezza, Vasantha Gowda, Richard T. Olsson and Christofer Lendel.
Funding was provided by the China Scholarship Council, Vinnova, the Bo Rydins Stiftelse (F30/19), and Formas (2017-00396).
High-Temperature and Chemically Resistant Foams from Sustainable Nanostructured Protein

Xinchen Ye, Antonio J. Capezza, Vasantha Gowda, Richard T. Olsson, Christofer Lendel, Mikael S. Hedenqvist

21 May 2021 Advanced Sustainable Systems https://doi.org/10.1002/adsu.202100063

DOI: 10.1002/adsu.202100063
Attached files
  • From left to right, foam materials consisting of whey, polyurethane, polystyrene, polyethylene and polystyrene. The top row represents unexposed materials and the bottom row represents the materials exposed to 150 degree air for one month.
Regions: Europe, Sweden
Keywords: Applied science, Engineering, Science, Chemistry, Business, Agriculture & fishing

Testimonials

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2021 by DNN Corp Terms Of Use Privacy Statement