Alphagalileo > Item Display
en-GBde-DEes-ESfr-FR

New light shed on how bone marrow niches keep stem cells thriving

18/04/2018 Osaka University

Japanese researchers uncover cellular factor needed to maintain the environment that regulates hematopoietic stem cells

Osaka – Hematopoietic stem cells (HSCs) are a class of stem cells located in bone marrow. HSCs give rise to every type of blood cell—from the red blood cells that carry oxygen to the white blood cells of the immune system. Bone marrow provides a niche that both houses and regulates HSCs to ensure proper formation of blood cells. However, the precise mechanisms that maintain the HSC niche are not fully understood.

Now, in a new study published in Genes & Development, researchers centered at Osaka University report they identified a key cellular protein involved in maintaining the bone marrow cavities and the HSC niche.

The HSC niche is a microscopic, specialized environment located around blood vessels within the bone marrow. A wide array of cells and molecules have been found to reside in the niche and play a role in regulating HSCs. The researchers were especially interested in one particular cell type: chemokine ligand 12-abundant reticular (CAR) cells.

“Several lines of evidence from prior studies pointed to CAR cells as having a crucial function in the HSC niche,” lead author Masanari Seike explains. “We wanted to take a closer look at specific proteins expressed in these cells, to really pinpoint what the cells were doing in the niche.”

The researchers found that a protein involved in regulating gene expression, called Ebf3, is highly abundant in CAR cells of mice. When they removed the gene that produces Ebf3 from these cells, they saw a significant decrease in the number of HSCs in the bone marrow—as well as some other, more surprising effects.

“In the absence of Ebf3, the stem cell population dropped fairly sharply, consistent with CAR cells playing a major role HSC regulation,” Seike adds. “What we didn’t expect was the impact the removal would have on the shape of the niche itself. We found that bone density increased dramatically, essentially filling in the cavities that form niches. It appears the Ebf3-deficient CAR cells take on bone-synthesizing properties, similar to osteoblasts that typically make bone. We believe that CAR cells need Ebf3 to create the physical and molecular environment that ultimately becomes the HSC niche.”

The central role of Ebf3 in correctly balancing bone formation in the niche has significant clinical implications, and Ebf3 may eventually become a target of therapeutic interventions.

“Our findings suggest that drugs which modulate the activity of Ebf3 could have substantial clinical value,” lead investigator Takashi Nagasawa notes. “On the one hand, Ebf3 inhibitors may be able to increase bone mass in diseases like osteoporosis. On the other, Ebf3 activators may allow for the fine-tuning of HSC niches, which would improve the effectiveness of regenerative therapies that allow patients to use their own stem cells. We hope this discovery opens up exciting new areas of exploration in both directions.”

Article: Stem cell niche-specific Ebf3 maintains the bone marrow cavity

Journal: Genes & Development

DOI: 10.1101/gad.311068.117

Authors: Masanari Seike, Yoshiki Omatsu, Hitomi Watanabe, Gen Kondoh and Takashi Nagasawa

Funding: Japan Society for the Promotion of Science / Uehara Memorial Foundation / Princess Takamatsu Cancer Research Fund
Attached files
  • Fig.1. CAR cells are specialized mesenchymal stem cells, which express the specific transcription factors, Ebf1/3, inhibiting osteoblast differentiation to remain undifferentiated, maintain marrow cavities, enhance CXCL12 and SCF expression, and create HSC niches.(credit: Genes and Development)
18/04/2018 Osaka University
Regions: Asia, Japan
Keywords: Science, Life Sciences, Health, Medical

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2021 by DNN Corp Terms Of Use Privacy Statement