Alphagalileo > Item Display
en-GBde-DEes-ESfr-FR

Electronic paper made of “real” paper

18/04/2018 Osaka University

Osaka University-led researchers developed technology to combine “a transparent paper” with high transparency (90% of visible-light transmittance of paper made from cellulose nanofibers) and a conventional “white paper” made from cellulose pulp fibers, fabricating a highly transparent electrode and a white electrolyte with high visibility. Through the combination of the electrode and electrolyte, they produced paper-based electrochromic (EC) displays. Their research results were published in ACS Applied Materials & Interfaces.

In EC devices, when voltage is applied to a transparent EC electrode, ions or electrons move into the EC layer in the electrolyte (ionic liquid), resulting in coloration or decolzoration. However, conventional EC devices had problems: sealing was necessary for preventing leakage of the electrolyte, making thin films was difficult, and EC performance was compromised due to evaporation of the electrolyte.

A group of researchers led by Hirotaka Koga succeeded in preparing a paper electrolyte by supporting a non-volatile electrolyte (1-butyl-3-methylimidazolium tetrafluoroborate [bmim]BF4) on the surface of cellulose pulp fibers through hydrogen bonding. Furthermore, they evenly coated conducting polymers with EC function, poly(3,4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT:PSS), onto the entire surface of the transparent paper made from cellulose nanofibers, fabricating a transparent EC paper electrode.

By sandwiching the as-prepared LiClO4/[bmim]BF4@paper electrolyte between EC conductive PEDOT:PSS-coated transparent cellulose nanofiber papers (denoted as PEDOT:PSS@nanopapers) as a transparent EC electrode, this group fabricated an EC paper device.

This EC device not only resolves the above-mentioned problems, but is also flexible and easily bent because the whole device is paper-based. In addition, a white paper electrolyte with high optical reflectance enhances the visibility of the EC displays.

The researchers have created a new application for paper, which has traditionally acted as a medium on which to display information by writing and printing, as a display using electricity. They have succeeded in developing various paper-based electronic devices, such as memory, transistors, antennas, and supercapacitors. If these technologies are integrated, it will become possible to produce paper-based electronic books as well.

Article: Ionic Liquid Mediated Dispersion and Support of Functional Molecules on Cellulose Fibers for Stimuli-Responsive Chromic Paper Devices

Journal: ACS Applied Materials & Interfaces

DOI: 10.1021/acsami.7b14827

Authors: Hirotaka Koga, Masaya Nogi, and Akira Isogai

Funding: Japan Society for the Promotion of Science / Cooperative Research Program “CORE Lab” of Network Joint Research Center for Materials and Devices: Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials
Attached files
  • Figure 1. An electrochromic display based on transparent paper electrodes and a paper electrolyte.
  • Figure 2. Schematic of conventional electrochromic display (left) and electrochromic paper display (right).
18/04/2018 Osaka University
Regions: Asia, Japan
Keywords: Applied science, Nanotechnology

Testimonials

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2021 by DNN Corp Terms Of Use Privacy Statement