Hannover Messe: Flockige Nanopartikel schützen verlässlich vor Rost

Für Architektur, Brücken- und Schiffsbau werden große Mengen Stahl verbaut. Solche Konstruktionen sollen langlebig sein. Sie dürfen auch im Laufe vieler Jahre nicht an Festigkeit und Sicherheit verlieren. Dafür müssen verwendete Stahlplatten und –träger dauerhaft und großflächig vor dem Verrosten geschützt werden. Vor allem Luftsauerstoff und Wasserdampf sowie Salze greifen den Stahl an. Um das Eindringen der rostfördernden Stoffe zu verhindern, werden heute verschiedene Techniken genutzt. Eine gängige Methode ist der Rostschutz mit Zinkphosphat-Beschichtungen. Nun haben Forscher des INM – Leibniz-Institut für Neue Materialien spezielle Zinkphosphat-Nanopartikel entwickelt. Im Gegensatz zu herkömmlichen, kugelförmigen Zinkphosphat-Nanopartikeln, sind die neuen Nanopartikel flockig. Sie sind zehnmal so lang wie dick. Diese Vorzugsrichtung verlangsamt das Vordringen der Gasmoleküle zum Metall.

Ihre Ergebnisse und Möglichkeiten zeigen die Entwickler auf der diesjährigen Hannover Messe am Stand B46 in Halle 2 im Rahmen der Leitmesse Research & Technology vom 25. bis 29. April.

„In ersten Testbeschichtungen konnten wir zeigen, dass sich die flockigen Nanopartikel mauerartig übereinander schichten“, erklärt Carsten Becker-Willinger, Leiter des Programmbereichs Nanomere® am INM. „Dadurch verlängert sich der Weg der Gasmoleküle durch die Schutzbeschichtung hindurch, weil sie sich einen Weg durch die „Mauerritzen“ suchen müssen.“ Das Ergebnis sei ein deutlich langsameres Verrosten als bei Beschichtungen mit kugelförmigen Nanopartikeln, wo Gasmoleküle viel schneller einen Weg durch die Schutzschicht zum Metall finden.

In weiteren Testreihen konnten die Wissenschaftler die Wirksamkeit der neuen Nanopartikel bestätigen. Dazu tauchten sie Stahlbleche in Elektrolyt-Lösungen mit je kugelförmigen und flockigen Zinkphosphat-Nanopartikeln. Bereits nach einem halben Tag zeigten die Stahlbleche in den Elektrolyten mit kugelförmigen Nanopartikeln Rostspuren. In den Elektrolyten mit flockigen Nanopartikeln blieben die Stahlbleche nach drei Tagen noch unversehrt und glänzend. Für die Herstellung ihrer Partikel verwendeten die Forscher handelsübliche Zinksalze, Phosphorsäure und eine organische Säure. Je mehr organische Säure sie zusetzten, umso flockiger wurden die Nanopartikel.

Das INM erforscht und entwickelt Materialien – für heute, morgen und übermorgen. Chemiker, Physiker, Biologen, Material- und Ingenieurwissenschaftler prägen die Arbeit am INM. Vom Molekül bis zur Pilotfertigung richten die Forscher ihren Blick auf drei wesentliche Fragen: Welche Materialeigenschaften sind neu, wie untersucht man sie und wie kann man sie zukünftig für industrielle und lebensnahe Anwendungen nutzen? Dabei bestimmen vier Leitthemen die aktuellen Entwicklungen am INM: Neue Materialien für Energieanwendungen, Neue Konzepte für medizinische Oberflächen, Neue Oberflächenmaterialien für tribologische Systeme sowie Nano-Sicherheit und Nano-Bio. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen.
Das INM - Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 220 Mitarbeiter.

Full bibliographic information


Nanopartikel-Synthese:
Perre, Emilie, Albayrak, Sener, Wild, Mandy, Becker-Willinger, Carsten; "Flake-type zinc phosphate particles as new corrosion protection additives in organic coatings" Conference transcript of EUROCORR 2015, September 06-10, 2015, Graz, 2015
Attached files
  • 160407 Korrosionsschutz Zinkphosphat.jpg