KAIST announced on the November 26th that the CubeSat 'K-HERO (KAIST Hall Effect Rocket Orbiter)', developed by the research team of Professor Wonho Choe from the Department of Nuclear and Quantum Engineering, is scheduled to launch into space aboard the 4th Nuri rocket launch vehicle on November 27th from the Naro Space Center in Goheung, Jeollanam-do.
This 4th Nuri launch is the first to be managed by the private company Hanwha Aerospace, which received technology transfer from the Korea Aerospace Research Institute (KARI), marking a significant milestone in the transformation of the domestic space industry. Along with the main payload, the Next-Generation Medium Satellite 3, twelve CubeSats developed by industry, academia, and research institutions will be onboard, with K-HERO being one of them.
The development of K-HERO was officially initiated when Professor Wonho Choe's research team was selected as the basic satellite development team in the '2022 CubeSat Competition' organized by KARI.
The basic satellite is a technology verification satellite designed to confirm whether the design and core components operate normally in the space environment before proceeding with the flight model (FM) production. K-HERO is a 3U standard CubeSat with dimensions of $10\text{ cm}$ (width) $\times$ $10\text{ cm}$ (length) $\times$ $30\text{ cm}$ (height) and a weight of $3.9\text{ kg}$. It was designed to satisfy all stability, electrical specifications, and interface conditions with the launch vehicle.
The core mission of K-HERO is to directly verify the in-space operation of the 150 W class micro-satellite Hall thruster developed by the research team.
The Hall thruster can be simply described as a 'space engine powered by electricity'. It is an electric propulsion engine that moves the satellite slowly but very efficiently using electricity.
Instead of burning a lot of fuel to generate instantaneous thrust, like a rocket, it works by using electricity to turn gas (Xenon) into a plasma state and rapidly accelerating it backward to push the satellite forward. Hall thrusters are considered a core technology for the era of small and constellation satellites due to their high fuel efficiency.
Hall thrusters are already a proven technology, having been used in large satellites and deep-space probes for over 20-30 years. However, their size and power requirements were large, so in the past, they were mainly operated on large geostationary (GEO) communication/broadcasting satellites and used by NASA and ESA deep-space probes for long-distance flights.
Recently, the emergence of the SpaceX Starlink satellite constellation has led to a surge in demand for small and micro electric thrusters. As the global space industry shifts towards satellite constellations, 'small and efficient thrusters' have become essential technology.
K-HERO is the first case of direct in-space demonstration of a micro Hall thruster made with domestic technology, and it is expected to be an important milestone in enhancing domestic technological competitiveness.
Professor Wonho Choe's research team began research on Hall thrusters in Korea in 2003, securing original technology based on plasma physics. In 2013, they successfully mounted a 200 W class Hall thruster on the 'KAIST Science and Technology Satellite 3,' proving its practical utility. This time, they have improved the design to operate even at a lower power of 30 W, developing a next-generation model aimed at micro-satellites.
COSMOVY Inc, a laboratory startup founded by Professor Wonho Choe's research team, also participated in the development of K-HERO, further strengthening the foundation for technology commercialization.
Professor Wonho Choe stated, "Starting with K-HERO, the number of small satellites equipped with electric thrusters will increase significantly in Korea. The Hall thruster being verified this time can be utilized for various missions, including low-Earth orbit constellation surveillance and reconnaissance satellites, 6G communication satellites, very-low-Earth orbit high-resolution satellites, and asteroid probes."
President Kwang Hyung Lee stated, "The launch of K-HERO is a significant opportunity to directly verify KAIST's electric propulsion technology on a micro-satellite platform once again in space, and it will be an important turning point that will further enhance the technological competitiveness of small satellites in Korea. KAIST will continue to contribute to the development of our country's space technology.