Next Generation Robots Roaming Shipyards and City Centers​
en-GBde-DEes-ESfr-FR

Next Generation Robots Roaming Shipyards and City Centers​


KAIST announced on the September 30th that domestic robot startups, founded on KAIST research achievements, are driving new innovation at shipyards and urban worksites.

An industrial walking robot that freely climbs walls and ceilings and a humanoid walking robot that walks through downtown Gangnam are attracting attention as they enter the stage of commercialization. The stars are DIDEN Robotics Co., Ltd. and Eurobotics Co., Ltd.

Diden Robotics is providing a new breakthrough in the industrial automation market, including the shipbuilding industry, by commercializing its innovative 'Seungwol (Ascend and Cross) Robot' technology, which allows it to move freely and work on steel walls and ceilings. Eurobotics is commercializing world-class humanoid walking technology, and this achievement is scheduled to be officially presented at the international humanoid robot conference, 'Humanoids 2025,' to be held on October 1st.

Diden Robotics is a robotics startup jointly founded in March 2024 by four alumni from the KAIST Mechanical Engineering Hu-bo Lab DRCD research team (Professor Hae-Won Park). Its flagship product, 'DIDEN 30,' is a quadrupedal robot designed for use in high-risk work environments that are difficult for humans to access, combining autonomous driving technology, a foot-shaped leg structure, and magnetic feet.

The 'DIDEN 30' successfully completed the 'Longitudinal (longi) Overcoming Test,' in which it stepped over steel stiffeners (longitudinals) densely installed as part of the structure at a ship construction site, proving its potential for field deployment. Currently, the company is conducting research to enhance its functionality so it can stably pass through access holes, the narrow entryways inside ships. It is also pushing for performance improvements so it can be deployed for real tasks such as welding, inspection, and painting starting in the second half of 2026.

A next-generation bipedal walking robot, 'DIDEN Walker,' is also under development. Targeting the completion of a prototype in the fourth quarter of 2025, it is being designed for stable walking in cramped and complex industrial environments. Plans are also underway to equip it with an upper-body manipulator for automated welding in the shipbuilding industry.

Diden Robotics is accelerating the advancement of its proprietary 'Physical AI' technology. The core is the self-developed AI learning platform, 'DIDEN World,' which applies an offline reinforcement learning method where the AI generates optimal motion data in a virtual simulation beforehand and learns without trial and error, increasing learning efficiency and stability.

Furthermore, to actually implement the AI technology, the company is internalizing its hardware and advancing its 3D recognition technology, which serves as the robot's 'eyes.' It is aiming for a completely autonomous walking system that requires no worker intervention by 2026, using technology such as 3D mapping based on four cameras.

In addition to this technological development, Diden Robotics successfully performed the longitudinal overcoming, Seungwol test, and welding work on blocks under construction through a joint development with Samsung Heavy Industries in September. This is a significant achievement, meaning Diden Robotics' technology has been validated in actual industrial settings, moving beyond the laboratory level.

Meanwhile, Diden Robotics is collaborating with major domestic shipyards, including Samsung Heavy Industries, HD Hyundai Samho, Hanwha Ocean, and HD Korea Shipbuilding & Offshore Engineering, to develop site-customized robots.

Joon-Ha Kim, CEO of Diden Robotics, stated, "The successful tests at the Samsung Heavy Industries site proved the practicality and stability of our technology. We will establish ourselves as a leading company in solving labor shortages and driving automation in the shipbuilding industry."

Eurobotics is an autonomous walking startup jointly founded by three alumni from Professor Hyun Myung's research team at KAIST. It is promoting the commercialization of autonomous walking technology for indoor and outdoor industrial sites, including rough terrain. In a recently released video, a humanoid equipped with control technology developed by Eurobotics attracted attention by walking naturally through the crowd in downtown Gangnam.

The core technology is the 'Blind Walking Controller.' It determines locomotion based only on internal information without external sensors like cameras or LiDAR, enabling stable walking regardless of day, night, or weather. The robot performs locomotion by 'imagining' the terrain without precise terrain modeling, demonstrating robust performance with the same controller across various environments such as sidewalks, downhill slopes, and stairs.

This technology originated from the quadrupedal walking competition at the 2023 International Conference on Robotics and Automation (ICRA), where Professor Myung's lab participated, and proved its world-class capability by winning, beating MIT by a large margin. At the time, Byungg-ho Yoo, CEO of Eurobotics, led the team, and Co-CTOs Min-ho Oh and Dong-kyu Lee directly participated in developing the core autonomous walking technology. Based on this, they continued further development tailored to the humanoid environment and have entered the commercialization stage.

Byung-ho Yoo, CEO of Eurobotics, emphasized, "This video is the first step toward complete humanoid autonomous walking. We will develop KAIST's research achievements into technologies that can be immediately utilized in industrial settings."

Hyeonmin Bae, Head of the KAIST Startup Center, said, "We will provide close support from the initial stages to help the on-campus robotics industry grow actively and assist them in settling down stably."

Kwang Hyung Lee, President of KAIST, stated, "This achievement is a representative case showing that KAIST's fundamental technologies are rapidly spreading to industrial fields through startups. KAIST will continue to actively support innovative entrepreneurship based on challenging research and help lead the global robotics industry."

https://2025humanoids.org https://www.seoulairobot.com/

Fichiers joints
Regions: Asia, South Korea
Keywords: Applied science, Engineering, People in technology & industry, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Témoignages

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Nous travaillons en étroite collaboration avec...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by DNN Corp Terms Of Use Privacy Statement