A promising discovery in a rare neurodegenerative disease
en-GBde-DEes-ESfr-FR

A promising discovery in a rare neurodegenerative disease

28/03/2024 McGill University

Imagine being middle aged and starting to feel that you are off balance a lot and that you are having a hard time coordinating your movements. Those are among the symptoms of Spinocerebellar ataxia type 6, known as SCA6, a rare neurodegenerative disease which typically appears in adulthood and worsens over time. Over time, other problems such as slurred speech and difficulty seeing or seeing double, may also appear. It is estimated that fewer than 5,000 people in the US have the condition, which is the result of genetic mutations in the cerebellum.

The disease currently has no cure. But this may change, thanks to a new discovery made by McGill researchers.

In a recent article in Acta Neuropathologica, researchers from McGill University, led by Professor Alanna Watt of the Department of Biology, describe a discovery, that suggests possible paths towards new treatments.

They have been able to show that damaged mitochondria in the cells of the cerebellum, the part of the brain that plays a role in movement and balance but also in cognitive functions such as language and attention, most likely contribute to the progression of the disease.

“Mitochondria are commonly known as cell powerhouses because they generate the energy the cell needs to function,” said Sophia Leung, a PhD student in the Watt lab and the paper's first author. “When we looked at a mouse model of SCA6, we observed that the mitochondria were failing to generate that crucial power. What’s more, we found that the power outages were worsening as the disease worsened.”

The researchers also found that observations of human post-mortem tissue corroborated what they had found in mice, which suggests that this finding is relevant for the human disease.

“It’s an exciting finding because it suggests a promising new treatment target for patients living with this disease,” adds Alanna Watt, the senior author on the paper.

The study:

“Mitochondrial damage and impaired mitophagy contribute to disease progression in SCA6” by Leung, T.C.S., Fields, E., Rana, N. et al. was published in Acta Neuropathologica.
DOI: 10.1007/s00401-023-02680-z

Leung, T.C.S., Fields, E., Rana, N. et al. Mitochondrial damage and impaired mitophagy contribute to disease progression in SCA6. Acta Neuropathol 147, 26 (2024). https://doi.org/10.1007/s00401-023-02680-z
28/03/2024 McGill University
Regions: North America, Canada
Keywords: Health, Medical, Science, Chemistry

Témoignages

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Nous travaillons en étroite collaboration avec...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by DNN Corp Terms Of Use Privacy Statement