SlTHM27-SlGAD2 model regulates the cold tolerance in tomato by regulating GABA and anthocyanin.
en-GBde-DEes-ESfr-FR

SlTHM27-SlGAD2 model regulates the cold tolerance in tomato by regulating GABA and anthocyanin.

25/04/2024 TranSpread

The frequency and intensity of plant stresses have increased in recent years due to climate change. Among them, low temperature is an unavoidable environmental factor limiting agricultural productivity. γ-Aminobutyric acid (GABA) is a non-protein, four-carbon amino acid that is widely found in all domains of life, including bacteria and eukaryotes. Exogenous GABA can effectively increase plant tolerance to various stresses. However, the specific mechanism of action of GABA in cold tolerance in plants is not clear.

In April 2024, Horticulture Research published a research paper titled "SlGAD2 is the target of SlTHM27, positively regulates cold tolerance by mediating anthocyanin biosynthesis in tomato", a collaboration between Prof. Xiaohui Hu's team at Northwest A&F University and Academician Tianlai Li at Shenyang Agricultural University.

This study first demonstrated that exogenous spraying of 55 mM GABA significantly increased the cold tolerance of tomato seedlings. To further investigate how GABA responds to the process of cold tolerance in tomato plants, this study analyzed the expression levels of GABA synthesis-related genes (SlGAD1-5) under low temperature and found that SlGAD2 responded positively to cold stress. It was shown that overexpression of SlGAD2 increased endogenous GABA levels, reduced the extent of cytoplasmic membrane damage, and improved antioxidant enzyme activities and ROS scavenging capacity, whereas SlGAD2 mutants exhibited a cold-sensitive phenotype (Fig. 1). Interestingly, this study revealed that overexpression of SlGAD2 induced anthocyanin biosynthesis in response to cold stress by increasing the level of endogenous GABA. Furthermore, SlGAD2 expression was negatively regulated by the transcription factor SlTHM27. However, the transcript levels of SlTHM27 were repressed under cold stress. SlTHM27 negatively regulates cold tolerance in tomato by inhibiting SlGAD2-promoted GABA accumulation and anthocyanin biosynthesis.

In conclusion, this study has revealed for the first time the mechanism of the SlTHM27-SlGAD2 regulatory module responds to cold stress by regulating GABA levels (Fig. 2), providing valuable insights for improving cold tolerance in tomato.

###

References

Authors

Jingrong Wang, Yong Zhang, Junzheng Wang, Abid Khan, Zheng Kang, Yongbo Ma, Jiarui Zhang, Haoran Dang, Tianlai Li, Xiaohui Hu

Affiliations

College of Horticulture, Northwest A&F University

About Xiaohui Hu

College of Horticulture, Northwest A&F University, Professor/Doctoral Supervisor, Scientist of China Agriculture Research System (Vegetable), Shaanxi Vegetable Industry Technology System Scientist. She engaged in plant physiology of abiotic stress,technology of efficient production on protected vegetable, and automatic management of greenhouse, the main research crops are tomatoes and cucumbers.

Title of original paper: SlGAD2 is the target of SlTHM27, positively regulates cold tolerance by mediating anthocyanin biosynthesis in tomato
Authors: Jingrong Wang, Yong Zhang, Junzheng Wang, Abid Khan, Zheng Kang, Yongbo Ma, Jiarui Zhang, Haoran Dang, Tianlai Li, Xiaohui Hu
Journal: Horticulture Research
Original Source URL: https://doi.org/10.1093/hr/uhae096
DOI: 10.1093/hr/uhae096
Latest article publication date: 04 April 2024
Subject of research: Not applicable
COI statement: The authors declare that they have no competing interests.
Archivos adjuntos
  • Fig. 1 Slgad2 mutant plants are more sensitive to cold stress.
  • Fig. 2 A working model for SlTHM27-SlGAD2 in response to cold stress.
25/04/2024 TranSpread
Regions: North America, United States, Asia, China
Keywords: Applied science, Engineering

Testimonios

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Trabajamos en estrecha colaboración con...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by DNN Corp Terms Of Use Privacy Statement