Metallische Gläser: Materialforschung an Bord der ISS
en-GBde-DEes-ESfr-FR

Metallische Gläser: Materialforschung an Bord der ISS

02/02/2026 Empa

Metalle sind vielseitige Werkstoffe und begleiten uns durch den Alltag, sei es als grosse Bauelemente oder winzige Komponenten in unseren elektronischen Geräten, als robuste Werkzeuge oder als eleganter Schmuck. Bei den meisten Anwendungen liegen Metalle in einer geordneten kristallinen Struktur vor, die sie beim Erstarren aus der Schmelze fast immer annehmen. Doch was passiert, wenn sich Metallatome einmal nicht in klaren Mustern anordnen? Kühlt man bestimmte Legierungen sehr schnell aus der Schmelze ab, erstarren sie in einer «ungeordneten» – amorphen – Struktur, die derjenigen von Glas ähnelt. Deshalb werden solche amorphen Metalle auch als «metallische Gläser» bezeichnet.

Metallische Gläser sind so etwas wie der heilige Gral der Metallurgie. Sie sind hart wie Quarzglas, und ihre glatte Oberfläche ist besonders widerstandsfähig gegen Kratzer und Korrosion. Ganz anders als Glas sind metallische Gläser aber elastisch und kehren nach Verformungen eher in ihre Ursprungsform zurück als gewöhnliche Metalle. Das macht sie zu einem begehrten Material für Anwendungen in der Medizin und in der Weltraumtechnologie.

Die Knacknuss am Ganzen ist indes die Herstellung der metallischen Gläser, denn die meisten Metalle «wollen» am liebsten ihre natürliche kristalline Form annehmen. «Vor allem bei der Herstellung von grösseren Komponenten ist es schwierig, die amorphe Struktur zu behalten», sagt Empa-Forscher Damien Terebenec, der am Empa-Zentrum für Röntgenanalytik an metallischen Gläsern forscht.

Die Schwerkraft ausschalten

Materialforschende wie Terebenec arbeiten mit komplexen Legierungen und präzis gesteuerten Prozessen, um amorphe Metalle herzustellen. Dafür ist ein genaues Verständnis der physikalischen Eigenschaften des Materials notwendig, insbesondere in dessen flüssigen Form, in der Schmelze. Und auch das ist nicht einfach: «Man muss flüssige Metalltröpfchen in der Schwebe untersuchen, da der Kontakt mit einem Schmelztiegel eine Kristallisation des Metalls auslösen und so das gesamte Experiment gefährden kann», erklärt Terebenec. Dies kann man etwa mittels starker elektromagnetischer Felder erreichen – aber die Schwerkraft der Erde verformt die runden Tröpfchen und verfälscht die Messungen.

Aus diesem Grund greifen Terebenec und andere Forschende des Zentrums für Röntgenanalytik unter der Leitung von Antonia Neels auf eine ganz besondere Forschungsplattform zurück: die Internationale Raumstation ISS. Im Rahmen des Forschungsprojekts «THERMOPROP» der Europäischen Weltraumorganisation ESA, das von Neels geleitet wird, untersuchen die Forschenden die physikalischen Eigenschaften von metallischen Gläsern in der Mikrogravitation – der Beinahe-Schwerelosigkeit in der erdnahen Umlaufbahn. Zugleich laufen auch Versuche an der Empa in Dübendorf, wo Neels, Terebenec und ihre Kolleginnen und Kollegen die Struktur der metallischen Gläser mit unterschiedlichen Röntgentechniken untersuchen.

«Die Daten aus den Versuchen auf der ISS fliessen in Computersimulationen ein, mit denen sich wiederum industrielle Prozesse entwickeln und optimieren lassen», so Antonia Neels. Trotz der luftigen – oder vielmehr Luft-losen – Höhen, in denen ein Teil der Versuche stattfindet, ist das Projekt nämlich alles andere als «abgehoben»: Von Beginn an ist nebst den Forschenden der Empa und der EPFL auch ein Industriepartner mit dabei. Das Schweizer Unternehmen PX Group aus La Chaux-de-Fonds stellt metallische Gläser für die Uhrenindustrie her, wo die harten, biegsamen Materialien für präzise Mechanismen und robuste Gehäuse verwendet werden. «Unser Partner konnte unsere Erkenntnisse aus dem Projekt bereits in verbesserte Herstellungsprozesse einfliessen lassen», sagt Neels.

Zuverlässige Mechanismen für Satelliten

Das an Bord der ISS und an der Empa gewonnene Wissen fliesst aber auch zurück in den Weltraum. Nebst ihren irdischen Einsatzgebieten eignen sich metallische Gläser auch für Anwendungen an Bord von Raumschiffen und Satelliten. Ihre Elastizität und Widerstandsfähigkeit ermöglichten etwa die Konstruktion von zuverlässigen Mechanismen, die über lange Zeit wartungsfrei funktionieren. In einem zweiten Projekt mit der ESA setzen die Empa-Forschenden Materialproben den rauen Bedingungen im Weltall aus.

Der entsprechende Versuch namens «SESAME» flog im November 2024 zur ISS und wurde im Dezember an der Aussenseite des europäischen Labormoduls «Columbus» installiert. Er umfasst zahlreiche Materialproben von 15 europäischen Forschungsinstitutionen. Nach rund einem Jahr im Weltall sollen die Proben wieder zur Erde zurückkehren und analysiert werden – darunter auch das metallische Glas des Empa-Teams. «Wir können einzelne Bedingungen aus dem Weltall auf der Erde simulieren, etwa Temperaturschwankungen, Vakuum oder Strahlung – aber nicht alles miteinander», erklärt Neels. «Wir wollen wissen, ob ein längerer Aufenthalt unter Weltraumbedingungen die Struktur des Materials verändert. Denn die Struktur definiert die Materialeigenschaften», ergänzt Terebenec.

Die Versuche auf der ISS laufen in verschiedenen Phasen ab. So sind weitere Experimente mit flüssigen metallischen Gläsern der Empa an Bord der ISS für nächstes Jahr geplant. «Beide Projekte werden wohl bis zum Ende der ISS im Jahr 2030 laufen», so Neels. Im – und für den – Weltall gibt es nämlich noch viel zu lernen. Die Projekte werden im Rahmen des ESA-PRODEX-Programms (Programme de Développement d'Expériences Scientifiques) durchgeführt und vom Swiss Space Office (SSO) sowie dem PRODEX Office unterstützt.
SLJ Thomä, R Zboray, A Chevalier, R Frison, R Sauget, S Prades-Rödel, R Logé, A Blatter, A Dommann, A Neels: Partial crystallization in Pd-BMG systems: From understanding structure towards influencing functionality through temperature-time series; Journal of Materials Research and Technology (2024); doi: 10.1016/j.jmrt.2024.10.236

F Haag, R Sauget, G Kurtuldu, S Prades-Rödel, JEK Schawe, A Blatter, JF Löffler: Assessing Continuous Casting of Precious Bulk Metallic Glasses; Journal of Non-Crystalline Solids (2019); doi: 10.1016/j.jnoncrysol.2018.09.035
Archivos adjuntos
  • Empa-Forscher Damien Terebenec analysiert die Struktur metallischer Gläser in einem Röntgendiffraktometer. Bild: Empa
  • Der Zwilling dieser Probe befindet sich auf der Aussenseite der ISS als Teil des «SESAME»-Experiments. Bild: Empa
02/02/2026 Empa
Regions: Europe, Switzerland, United Kingdom
Keywords: Applied science, Engineering, Science, Physics, Space Science

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonios

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Trabajamos en estrecha colaboración con...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2026 by DNN Corp Terms Of Use Privacy Statement