Catalysts are the “invisible engines” of hydrogen energy, governing both hydrogen production and electricity generation. Conventional catalysts are typically fabricated in granular particle form, which is easy to synthesize but suffers from inefficient use of precious metals and limited durability. KAIST researchers have introduced a paper-thin sheet architecture in place of granules, demonstrating that a structural innovation—rather than new materials—can simultaneously reduce precious-metal usage while enhancing both hydrogen production and fuel-cell performance.
KAIST (President Kwang Hyung Lee) announced on the 21st of January that a research team led by Professor EunAe Cho of the Department of Materials Science and Engineering has developed a new catalyst architecture that dramatically reduces the amount of expensive precious metals required while simultaneously improving hydrogen production and fuel-cell performance.
The core of this research lies in the application of ultrathin nanosheet structures, with thicknesses tens of thousands of times thinner than a human hair, enabling the team to overcome both efficiency and durability limitations of conventional catalysts.
Water electrolyzers and fuel cells are key technologies for hydrogen energy production and utilization. However, their commercialization has been severely constrained by the scarcity and high cost of iridium (Ir) and platinum (Pt), which are commonly used as catalysts. In conventional particle-based catalysts, only a limited surface area participates in reactions, and long-term operation inevitably leads to performance degradation.
To address this, the research team transformed agglomerated catalyst particles into paper-like, ultrathin and laterally extended sheets. For water electrolysis, they developed ultrathin iridium nanosheets with lateral size of 1–3 micrometers and thicknesses below 2 nanometers. This structure dramatically increased the active surface area participating in reactions, enabling significantly higher hydrogen production with the same amount of iridium.