KAIST, Production Temperature ↓ by 500°C, Power Output ↑ 2x… Next-Generation Ceramic Electrochemical Cell Reborn​
en-GBde-DEes-ESfr-FR

KAIST, Production Temperature ↓ by 500°C, Power Output ↑ 2x… Next-Generation Ceramic Electrochemical Cell Reborn​


As power demand surges in the AI era, the “protonic ceramic electrochemical cell (PCEC),” which can simultaneously produce electricity and hydrogen, is gaining attention as a next-generation energy technology. However, this cell has faced the technical limitation of requiring an ultra-high production temperature of 1,500°C. A KAIST research team has succeeded in establishing a new manufacturing process that lowers this limit by more than 500°C for the first time in the world.

KAIST (President Kwang Hyung Lee) announced on the 4th of December that Professor Kang Taek Lee’s research team in the Department of Mechanical Engineering developed a new process that enables the fabrication of high-performance protonic ceramic electrochemical cells at temperatures more than 500°C lower than before, using “microwave + vapor control technology” that leverages microwave heating principles and the diffusion environment of chemical vapor generated from specific chemical components.

The electrolyte—the key material of protonic ceramic electrochemical cells—contains barium (Ba), and barium easily evaporates at temperatures above 1,500°C, which has been the main cause of performance degradation. Therefore, the ability to harden the ceramic electrolyte at a lower temperature has been the core issue that determines cell performance.

As power demand surges in the AI era, the “protonic ceramic electrochemical cell (PCEC),” which can simultaneously produce electricity and hydrogen, is gaining attention as a next-generation energy technology. However, this cell has faced the technical limitation of requiring an ultra-high production temperature of 1,500°C. A KAIST research team has succeeded in establishing a new manufacturing process that lowers this limit by more than 500°C for the first time in the world.

KAIST (President Kwang Hyung Lee) announced on the 4th of December that Professor Kang Taek Lee’s research team in the Department of Mechanical Engineering developed a new process that enables the fabrication of high-performance protonic ceramic electrochemical cells at temperatures more than 500°C lower than before, using “microwave + vapor control technology” that leverages microwave heating principles and the diffusion environment of chemical vapor generated from specific chemical components.

The electrolyte—the key material of protonic ceramic electrochemical cells—contains barium (Ba), and barium easily evaporates at temperatures above 1,500°C, which has been the main cause of performance degradation. Therefore, the ability to harden the ceramic electrolyte at a lower temperature has been the core issue that determines cell performance.

To solve this, the research team devised a new heat-treatment method called “vapor-phase diffusion.” This technique places a special auxiliary material (a vapor source) next to the cell and irradiates it with microwaves to quickly diffuse vapor. When the temperature reaches approximately 800°C, the vapor released from the auxiliary material moves toward the electrolyte and tightly bonds the ceramic particles. Thanks to this technology, a process that previously required 1,500°C can now be completed at just 980°C. In other words, a world-first ceramic electrochemical cell fabrication technology has been created that produces high-performance electricity at a “low temperature” without damaging the electrolyte.

A cell fabricated with this process produced 2 W of power stably from a 1 cm² cell (roughly the size of a fingernail) at 600°C and generated 205 mL of hydrogen per hour at 600°C (about the volume of a small paper cup, among the highest in the industry). It also maintained stability without performance degradation during 500 hours of continuous operation.

In other words, this technology reduces the production temperature (−500°C), lowers the operating temperature (600°C), doubles performance (2 W/cm²), and extends the lifespan (500-hour stability), achieving world-class performance in ceramic cell technology.

The research team also enhanced the reliability of the technology by using digital twins (virtual simulations) to analyze gas-transport phenomena occurring in the microscopic internal structure of the cell − phenomena that are difficult to observe in actual experiments.

Professor Kang Taek Lee emphasized, “This study is the world’s first case of using vapor to lower the heat-treatment temperature by more than 500°C while still producing a high-performance, high-stability cell.” He added, “It is expected to become a key manufacturing technology that addresses the power challenges of the AI era and accelerates the hydrogen society.”

Dongyeon Kim (KAIST PhD) and Yejin Kang (KAIST PhD candidate) participated as co–first authors. The research results were published in Advanced Materials (IF: 26.8), one of the world’s leading journals in energy and materials science, and were selected as the Inside Front Cover article on October 29.
(Paper title: “Sub-1000°C Sintering of Protonic Ceramic Electrochemical Cells via Microwave-Driven Vapor Phase Diffusion,” DOI: https://doi.org/10.1002/adma.202506905)
This research was supported by the MSIT’s Mid-career Researcher Program and the H2 Next Round Program.

Archivos adjuntos
  • images0001150025.jpg
Regions: Asia, South Korea
Keywords: Applied science, Artificial Intelligence, Engineering, Technology, Science, Energy

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Testimonios

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Trabajamos en estrecha colaboración con...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by DNN Corp Terms Of Use Privacy Statement