Alpha 981 > Item Display (es-ES)

New statistical study finds link between protein evolution and thermal variation: Same constraint regulates short-term flexibility and long-term structural evolution of proteins

14/10/2021 University of Tokyo

A recent statistical study has revealed some of the constraints and directions in the evolution of the structure and function of proteins.Better models of protein structural dynamics may allow researchers to understand more of this fundamental mystery in living organisms.

Proteins perform essential functions such as material transport, immunity and catalysis. The various functions of proteins have evolved gradually over the course of evolution.

Due to thermal noise, or the random motion of atoms, proteins shift their structures while performing their functions. These dynamics usually happen in short time scales, from microseconds (millionth of seconds) to milliseconds (thousandth of seconds). Meanwhile, genetic mutations may also lead to variations in protein structures, leading to the evolution of proteins. Such an evolutionary process happens generation after generation, which correspond to a much longer time scale.

“Interestingly, although being two completely different processes, the dynamics and the evolution of proteins share many similarities. However, it is not easy to verify quantitatively, and the theoretical origin of the relationship has not yet been clarified before,” said Qian-Yuan Tang, Ph.D., co-author of the research published inPhysical Review Lettersand a former postdoctoral research fellow at the University of Tokyo. Tang is currently aresearch scientist[DCE1][TQ2]at the RIKEN Center for Brain Science in Japan.

In the recently published research, Tang and Professor Kunihiko Kaneko, a theoretical biology expert from the University of Tokyo Research Center for Complex Systems Biology, analyzed the structures of hundreds of thousands of proteins in scientific databases. These proteins can be divided into different groups based on their structural similarity. The proteins in the same group are usually the same kind of protein in different animal species.For example, the iron-carrying blood protein hemoglobin in humans, rats and fishes will be in the same group. The structural variations within a group reflect thestructural evolutionof the proteins. Further analysis shows that the structural variations that happened in evolution and the structural variations that happened in the functional dynamics of proteins share the same pattern.

“What we are finding is a connection between thermal noise-induced deformations andmutation-induced deformations,” said Tang.

“This correspondence between dynamics and evolution is due to the fact that structural changes of proteins due to thermal fluctuations and mutations share the same constraints,” said Kaneko.

These constraintslead to a close relation betweenthe directions in which protein functional movement and structural evolution tend to occur. The emergence of such constraints can be explained by the fact that protein structure must be resistant to thermal noise and genetic mutations, but also must be sensitive enough to function.

Abetter understanding of thiscorrespondencemay provide a unified way to understand the functional behavior of proteins and analyze their evolutionary constraints. These results also give a new perspective to the design of functional living systems and artificial intelligence systems.


Research Publication
Qian-Yuan Tang and Kunihiko Kaneko. Dynamics–Evolution Correspondence in Protein Structures.Physical Review Letters, 127, 098103 (2021).

Related Links
Graduate School of Arts and Sciences:
Qian-Yuan Tang's Website:

About the University of Tokyo
The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at or follow us on Twitter at @UTokyo_News_en.

Ministry of Education, Culture, Sports, Science and Technology of Japan; Japan Society for the Promotion of Science
Qian-Yuan Tang and Kunihiko Kaneko. Dynamics–Evolution Correspondence in Protein Structures.Physical Review Letters, 127, 098103 (2021).
Archivos adjuntos
  • Illustrations of rhodopsin protein structures in five different species. Proteins common in multiple species were compared to understand the relationship between how proteins change shape, both over seconds or minutes and throughout evolution. The image shows the light-detecting protein rhodopsin in five different species as well as an overlay to reveal how the protein structure has changed with evolution. Credit: Images by Qian-Yuan Tang, CC BY-SA-NC
14/10/2021 University of Tokyo
Regions: Asia, Japan
Keywords: Science, Life Sciences, Mathematics


We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Trabajamos en estrecha colaboración con...

  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2021 by DNN Corp Terms Of Use Privacy Statement