Alphagalileo > Item Display
en-GBde-DEes-ESfr-FR

New nano particles suppress resistance to cancer immunotherapy

17/09/2021 Hokkaido University

A specially designed lipid nanoparticle could deliver immune-signaling molecules into liver macrophage cells to overcome resistance to anti-tumor immunotherapy.

Hokkaido University scientists and colleagues in Japan have found a way that could help some patients overcome resistance to an immunotherapy treatment for cancer. The approach, proven in mice experiments, was reported in the Journal for Immunotherapy of Cancer.

The activation of checkpoint proteins on the surfaces of immune cells help regulate the immune response by preventing them from indiscriminately attacking the body’s other cells. But some cancer cells are able to hijack this mechanism, preventing an immune response against them as well. Scientists have recently developed immune checkpoint inhibitors that can counteract this strategy, but some people are resistant to the treatments.

Now, scientists at Hokkaido University and Aichi Institute of Technology have found a way around this by developing a specially designed lipid nanoparticle that can carry immunity-triggering molecules into immune cells in the liver called macrophages.

The lipid, called YSK12-C4, has a high affinity for immune cells. When intravenously injected into mice with metastatic melanoma, it was able to deliver signaling molecules, called cyclic dinucleotides, across the cell membranes of their liver macrophages, where they stimulated the production of immune-related proteins called type 1 interferons via a stimulator of an interferon gene (STING) pathway. These were released into the blood, activating another type of immune cell called natural killer cells in the spleen and lung, which produced interferon-gamma inside the lung metastases.

This treatment, on its own, only elicited a mild anti-tumor effect. This is because the type 1 interferons and interferon-gamma triggered the expression of a protein called PD-L1 on the cancer cells. PD-L1 prevents a strong tumor-killing immune response of natural killer cells that express PD-1. Administering an anti-PD-1 immunotherapy treatment, however, prevented the cancer cells from turning off those natural killer cells, which then became armed and able to launch a full-scale attack.

“The findings suggest that our lipid nanoparticles carrying immune-signaling molecules convert the immune status from immunologically cold to immunologically hot,” says Takashi Nakamura of Hokkaido University’s faculty of pharmaceutical sciences. “This could lead to the development of a promising adjuvant that reduces resistance to anti-PD-1 antibody treatment in some cancer patients.”

Further studies will need to examine whether the treatment can cause liver toxicity and if different signaling molecules can be used.

Funding:
This work was supported by the Japanese Government (MEXT), Platform Project for Supporting in Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science) from the Japan Agency for Medical Research and Development (AMED) and Hokkaido University, Global Facility Center (GFC), Pharma Science Open Unit (PSOU), funded by MEXT under 'Support Program for Implementation of New Equipment Sharing System'.

Takashi Nakamura, et al. STING agonist loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis via NK cell activation. Journal for ImmunoTherapy of Cancer. July 2, 2021. https://doi.org/10.1136/jitc-2021-002852
Attached files
  • After intravenous injection into mice, STING-lipid nanoparticles (red) transported through blood vessels(green) accumulate in the liver (Takashi Nakamura, et al. Journal for ImmunoTherapy of Cancer. July 2, 2021).
  • Combination therapy against anti-PD-1-resistant lung cancer. A combination of anti-PD-1 antibodies and stimulator of an interferon gene (STING)-loaded lipid nanoparticles (STING-LNP) had the maximum effect in reducing metastases (black regions) on lungs (pink tissue; far right). STING-lipid nanoparticles alone had a better effect (center right) than anti-PD-1 antibodies (center left), which were as effective as the control saline solution (far left; Takashi Nakamura, et al. Journal for ImmunoTherapy of Cancer. July 2, 2021).
  • Summary for reducing anti-PD-1 resistance by STING-LNP. The STING-LNPs were intravenously injected into mice, delivering immune-signaling molecules to the liver. This stimulated the production of IFN-1 by liver macrophages, which in turn activated the NK cells in the lung and spleen. The effect of NK cells is limited by PD-L1; when STING-LNPs are combined with Anti-PD-1 therapy, the NK cells are able to act fully and destroy cancer cells. IFN, interferon; NK, natural killer; PD-1, programmed cell death 1; STING-LNP, lipid nanoparticle containing a stimulator of an interferon gene (Takashi Nakamura, et al. Journal for ImmunoTherapy of Cancer. July 2, 2021).
  • Takashi Nakamura, lead author of this study (Photo: Takashi Nakamura).
17/09/2021 Hokkaido University
Regions: Asia, Japan
Keywords: Science, Life Sciences, Health, Medical

Testimonials

For well over a decade, in my capacity as a researcher, broadcaster, and producer, I have relied heavily on Alphagalileo.
All of my work trips have been planned around stories that I've found on this site.
The under embargo section allows us to plan ahead and the news releases enable us to find key experts.
Going through the tailored daily updates is the best way to start the day. It's such a critical service for me and many of my colleagues.
Koula Bouloukos, Senior manager, Editorial & Production Underknown
We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet

We Work Closely With...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2021 by DNN Corp Terms Of Use Privacy Statement