Device improves stem cell generation and chance for accessible Alzheimer’s cell therapy
en-GBde-DEes-ESfr-FR

Device improves stem cell generation and chance for accessible Alzheimer’s cell therapy


Researchers in Sweden say they have improved on a technique for converting regular skin cells into neural stem cells—an advance which they say helps close the gap for accessible personalized cell-based therapies for Alzheimer's and Parkinson's.

Using a specially-designed microfluidic device, the research team have developed an unprecedented and speedier approach to reprogramming human skin cells into induced pluripotent stem cells (iPSCs), and further transforming them into neural stem cells.

The study’s first author, Saumey Jain, says the platform could improve and lower the cost of cell therapy, making cells easier to match and be accepted by a patient’s body. The research was reported in Advanced Science by researchers from KTH Royal Institute of Technology.

Anna Herland, the senior author of the study, says the study demonstrated the first-ever case of microfluidics being used to redirect iPSCs toward becoming neural stem cells.

Engineering the transformation from regular cells into neural stem cells is in effect a two-stage process. Using a process that involves exposing cells to biochemical cues, the cells are induced into pluripotent stem cells (iPSCs), which have the power to generate different cell types.

Then they are transferred to a culture medium that mimics the signaling cues and developmental processes involved in formation of the nervous system. This stage, called neural differentiation, redirects cells to commit to being neural stem cells.

The medium for this kind of lab work has been shifting from well plates to microfluidic devices for nearly a decade. Herland says the new platform represents an improvement of microfluidics for both stages, iPSC generation and neural stem cell differentiation.

Using cells from a human skin biopsy, they found that the microfluidic platform enabled a boosted commitment to their neural fate at an earlier point than those differentiated in a conventional well plate format.

“We documented that the confined environment of a microfluidic platform boosts neural stem cell generation commitment,” Herland says.

Jain says the microfluidic chip is easy to fabricate using polydimethylsiloxane (PDMS), and its microscale size offers substantial cost savings in terms of reagents and cellular input.

The platform can be easily modified to enable adaptability for differentiation into other cell types, he says. It can be automated, providing a closed system that ensures consistency and reliability in producing highly homogenous cell populations.

“This marks a step towards making personalized cell-based therapies for Alzheimer's and Parkinson's accessible.”

Contributing to the study were researchers from Karolinska Institutet and Lund University collaborating in the VINNOVA-funded consortium IndiCell.

On-Chip Neural Induction Boosts Neural Stem Cell Commitment: Toward a Pipeline for iPSC-Based Therapies
Saumey Jain, Dimitrios Voulgaris, Surangrat Thongkorn, Rick Hesen, Alice Hägg, Mohsen Moslem, Anna Falk, Anna Herland
First published: 24 April 2024
https://doi.org/10.1002/advs.202401859
Angehängte Dokumente
  • Neural stem cells differentiated with the chip platform.
  • A close-up look at the microfluidic chip used for inducing stem cells.
Regions: Europe, Sweden
Keywords: Applied science, Engineering, Science, Life Sciences

Referenzen

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Wir arbeiten eng zusammen mit...


  • BBC
  • The Times
  • National Geographic
  • The University of Edinburgh
  • University of Cambridge
Copyright 2024 by DNN Corp Terms Of Use Privacy Statement