Seeing Black Holes More Clearly with Laser Light​
en-GBde-DEes-ESfr-FR

Seeing Black Holes More Clearly with Laser Light​


Radio telescopes are instruments that capture faint radio signals from space and convert them into images of celestial bodies. To observe distant black holes clearly, multiple radio telescopes must capture cosmic signals at exactly the same time, acting as a single unit. Research teams at KAIST have developedr a new reference signal technology that uses laser light to precisely synchronize the observation timing and phase of these telescopes.

KAIST announced on January 15th that a research team led by Professor Jungwon Kim from the Department of Mechanical Engineering—in collaboration with the Korea Astronomy and Space Science Institute, the Korea Research Institute of Standards and Science, and the Max Planck Institute for Radio Astronomy (MPIfR) in Germany—has implemented a technology that directly applies optical frequency comb lasers to radio telescope receivers.

While a typical laser emits only one color (frequency), an optical frequency comb laser emits tens of thousands of extremely accurate colors arranged at regular intervals. This appearance resembles the teeth of a comb, hence the name "frequency comb." Since the frequency of each individual "tooth" is known exactly and the intervals can be precision-tuned to the level of an atomic clock, scientists refer to it as an "ultra-precision ruler made of light."

The core of Very Long Baseline Interferometry (VLBI), a technique where multiple radio telescopes observe simultaneously, is aligning the phases of the radio signals received by each telescope as if aligning them to a single precise ruler. However, existing electronic reference signal methods faced limitations; as observation frequencies increased, precise phase calibration is becoming more difficult.

In response, the KAIST research team developed a method to deliver the optical frequency comb laser directly into the radio telescope, based on the idea of "improving the fundamental precision of phase alignment by utilizing light (lasers) from the signal generation stage." Through this, they successfully solved the problems of reference signal generation and phase calibration simultaneously within a single optical system.

If the conventional method was like using a "ruler that makes phase alignment difficult" at higher frequencies, this new technology can be compared to setting a standard with an "ultra-precision ruler that fixes the phase with extremely stable light." As a result, they have laid the foundation for distant radio telescopes to interoperate as elaborately as one giant telescope.

This technology was verified through test observations at the Korea VLBI Network (KVN) Yonsei Radio Telescope. The research team succeeded in detecting stable interference patterns (fringes) between radio telescopes and proved through actual observation that precise phase calibration is possible. Recently, this system was also installed at the KVN SNU Pyeongchang Radio Telescope, leading to expanded experiments using multiple observation sites simultaneously.

The team expects that this will not only allow for clearer imaging of black holes but also drastically reduce phase delay errors between instruments—a long-standing issue in VLBI observations.

The applications of this technology are not limited to astronomical observations. The team anticipates that it can be expanded to various advanced fields requiring precise space-time measurements, such as▲ Intercontinental ultra-precision clock comparison ▲Space geodesy ▲Deep-space probe tracking

Professor Jungwon Kim of KAIST stated, "This research is a case where the limits of existing electronic signal generation technology were overcome by directly applying optical frequency comb lasers to radio telescopes. It will significantly contribute to improving the precision of next-generation black hole observations and advancing the fields of frequency metrology and time standards."

Dr. Minji Hyun (currently at KRISS) and Dr. Changmin Ahn from KAIST participated as co-first authors. The research findings were published on January 4th in the international academic journal Light: Science & Applications.

  • Paper Title: Optical frequency comb integration in radio telescopes: advancing signal generation and phase calibration
  • DOI: 10.1038/s41377-025-02056-w
  • Lead Authors: Dr. Minji Hyun (KAIST, currently KRISS), Dr. Changmin Ahn (KAIST), Jungwon Kim (KAIST)

This research was conducted with support from the National Research Council of Science & Technology (NST) Creative Alliance Project(CAP), the National Research Foundation of Korea (NRF), and the Institute of Information & Communications Technology Planning & Evaluation (IITP).

Angehängte Dokumente
Regions: Asia, South Korea, Europe, Germany, North America, United States
Keywords: Applied science, Artificial Intelligence, Engineering, Technology

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Referenzen

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Wir arbeiten eng zusammen mit...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2026 by DNN Corp Terms Of Use Privacy Statement