Octopus-Inspired 3D Micro-LEDs Pave the Way for Selective Pancreatic Cancer Therapy​
en-GBde-DEes-ESfr-FR

Octopus-Inspired 3D Micro-LEDs Pave the Way for Selective Pancreatic Cancer Therapy​


-KAIST and UNIST Researchers Develop Shape-Morphing Device to Overcome Pancreatic Tumor Microenvironment Barriers

Conventional pancreatic cancer treatments face a critical hurdle due to the dense tumor microenvironment (TME). This biological barrier surrounds the tumor, severely limiting the infiltration of chemotherapy agents and immune cells. While photodynamic therapy (PDT) offers a promising alternative, existing external light sources, such as lasers, fail to penetrate deep tissues effectively and pose risks of thermal damage and inflammation to healthy organs

To address these challenges, Professor Keon Jae Lee’s team at KAIST, in collaboration with Professor Tae-Hyuk Kwon at UNIST, developed an implantable, shape-morphing 3D micro-LED device capable of effectively delivering light to deep tissues. The key technology lies in the device’s flexible, octopus-like architecture, which allows it to wrap around the entire pancreatic tumor. This mechanical compliance ensures uniform light delivery to the tumor despite the tumor’s physiological expansion or contraction, enabling continuous, low intensity photostimulation that precisely targets cancer cells while preserving normal tissue.

In in-vivo experiments involving mouse models, the device demonstrated remarkable therapeutic efficacy. Within just three days, tumor fibrous tissue was reduced by 64%, and the pancreatic tissue successfully reverted to normal tissue, overcoming the limitations of conventional PDT.

Prof. Keon Jae Lee said, "This research presents a new therapeutic paradigm by directly disrupting the tumor microenvironment, the primary obstacle in pancreatic cancer treatment." He added, "We aim to expand this technology into a smart platform integrated with artificial intelligence (AI) for real-time tumor monitoring and personalized treatment. We are currently seeking partners to advance clinical trials and commercialization for human application."
Professor Tae-Hyuk Kwon commented, "While phototherapy is effective for selective cancer treatment, conventional technologies have been limited by the challenges of delivering light to deep tissues and developing suitable photosensitizers." He added, "Building on this breakthrough, we aim to expand effective immune-based therapeutic strategies for targeting intractable cancers."

The result, titled "Deeply Implantable, Shape-Morphing, 3D MicroLEDs for Pancreatic Cancer Therapy," was featured as the cover article in Advanced Materials (Volume 37) on December 10, 2025.

Angehängte Dokumente
Regions: Asia, South Korea, Europe, United Kingdom
Keywords: Applied science, Artificial Intelligence, Engineering, Technology, Health, Medical

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Referenzen

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Wir arbeiten eng zusammen mit...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by DNN Corp Terms Of Use Privacy Statement