How Chemical Bonds Are Formed: Physicists at TU Graz Observe Energy Flow in Real Time
en-GBde-DEes-ESfr-FR

How Chemical Bonds Are Formed: Physicists at TU Graz Observe Energy Flow in Real Time

17.06.2025 TU Graz

A new method combines helium droplets with ultrashort laser pulses to initiate chemical processes in a controlled manner. This provides insights into the transfer of energy and charge during the formation of chemical bonds.

For the first time, a research team led by Markus Koch from the Institute of Experimental Physics at Graz University of Technology (TU Graz) has tracked in real time how individual atoms combine to form a cluster and which processes are involved. To achieve this, the researchers first isolated magnesium atoms using superfluid helium and then used a laser pulse to trigger the formation process. The researchers were able to observe this cluster formation and the involved energy transfer between individual atoms with a temporal resolution in the femtosecond range (1 femtosecond = 1 quadrillionth of a second). They recently published their findings in the journal Communications Chemistry.

“Nano-refrigerator” brings atoms into the starting position

"Normally, magnesium atoms instantaneously form tight bonds, which means that there is no defined starting configuration for observation of the bond-formation processes,” explains Markus Koch. The researchers have solved this problem, which often arises when observing chemical processes in real time, by conducting experiments with superfluid helium droplets. These droplets act like ultra-cold “nano-fridges” that isolate the individual magnesium atoms from each other at extremely low temperatures of 0.4 Kelvin (= -272.75 degrees Celsius or 0.4 degrees Celsius above absolute zero) at a distance of a millionth of a millimetre. “This configuration allowed us to initiate cluster formation with a laser pulse and track it precisely in real time,” explains Michael Stadlhofer, who carried out the experiments as part of his doctoral thesis.

Femtosecond spectroscopy makes chemical processes visible

The researchers observed the processes triggered by the laser pulse using photoelectron and photoion spectroscopy. While the magnesium atoms combined to form a cluster, they were ionised with a second laser pulse. Markus Koch and his colleagues were able to reconstruct the processes involved in detail on the basis of the ions formed and electrons released.

Atoms pool their energy

A key discovery here is energy pooling. As they bind to each other, several magnesium atoms transfer the excitation energy received from the first laser pulse to a single atom in the cluster, so that it reaches a much higher energy state. This is the first time that energy pooling has been demonstrated with time resolution.

Basic research with application potential

“We hope that this atomic separation inside helium droplets will also work for a larger class of elements and thus become a generally applicable method in basic research,” says Markus Koch. “In addition, the findings on energy pooling could be relevant for energy-transfer processes in various areas of application, for example in photomedicine or in the utilisation of solar energy.”
Real-time tracking of energy flow in cluster formation
Authors: Michael Stadlhofer, Bernhard Thaler, Pascal Heim, Josef Tiggesbäumker, Markus Koch.
In: Communications Chemistry, 8, 165 (2025)
DOI: https://doi.org/10.1038/s42004-025-01563-6
Angehängte Dokumente
  • Markus Koch in the femtosecond laser laboratory at the Institute of Experimental Physics at TU Graz. Image source: Lunghammer - TU Graz
17.06.2025 TU Graz
Regions: Europe, Austria
Keywords: Science, Chemistry, Physics

Disclaimer: AlphaGalileo is not responsible for the accuracy of content posted to AlphaGalileo by contributing institutions or for the use of any information through the AlphaGalileo system.

Referenzen

We have used AlphaGalileo since its foundation but frankly we need it more than ever now to ensure our research news is heard across Europe, Asia and North America. As one of the UK’s leading research universities we want to continue to work with other outstanding researchers in Europe. AlphaGalileo helps us to continue to bring our research story to them and the rest of the world.
Peter Dunn, Director of Press and Media Relations at the University of Warwick
AlphaGalileo has helped us more than double our reach at SciDev.Net. The service has enabled our journalists around the world to reach the mainstream media with articles about the impact of science on people in low- and middle-income countries, leading to big increases in the number of SciDev.Net articles that have been republished.
Ben Deighton, SciDevNet
AlphaGalileo is a great source of global research news. I use it regularly.
Robert Lee Hotz, LA Times

Wir arbeiten eng zusammen mit...


  • e
  • The Research Council of Norway
  • SciDevNet
  • Swiss National Science Foundation
  • iesResearch
Copyright 2025 by DNN Corp Terms Of Use Privacy Statement